Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Psychiatry Res Neuroimaging ; 339: 111785, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325165

RESUMO

Dopamine and norepinephrine are implicated in the pathophysiology of mental disorders, but non-invasive study of their neuronal function remains challenging. Recent research suggests that neuromelanin-sensitive magnetic resonance imaging (NM-MRI) techniques may overcome this limitation by enabling the non-invasive imaging of the substantia nigra (SN)/ ventral tegmental area (VTA) dopaminergic and locus coeruleus (LC) noradrenergic systems. A review of 19 studies that met the criteria for NM-MRI application in mental disorders found that despite the use of heterogeneous sequence parameters and metrics, nearly all studies reported differences in contrast ratio (CNR) of LC or SN/VTA between patients with mental disorders and healthy controls. These findings suggest that NM-MRI is a valuable tool in psychiatry, but the differences in sequence parameters across studies hinder comparability, and a standardized analysis pipeline is needed to improve the reliability of results. Further research using standardized methods is needed to better understand the role of dopamine and norepinephrine in mental disorders.


Assuntos
Dopamina , Melaninas , Transtornos Mentais , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Transtornos Mentais/diagnóstico por imagem , Norepinefrina
2.
Food Chem ; 371: 131125, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563971

RESUMO

Tartary buckwheat has higher health-promoting value than common buckwheat. However, the related metabolites information except flavonoids is largely deficient. Here, we compared the seed metabolomes of the two species using a UHPLC-QqQ-MS-based metabolomics approach. In total, 722 metabolites were obtained, of which 84 and 78 were identified as the key active ingredients of Traditional Chinese Medicines and the active pharmaceutical ingredients for six major diseases-resistance, respectively. Comparative analysis showed there were obviously difference in metabolic profiles between the two buckwheat species, and further found 61 flavonoids and 94 non-flavonoids metabolites displayed significantly higher contents (≥2 fold) in Tartary buckwheat than in common buckwheat. Our results suggest that Tartary and common buckwheat seeds are rich in metabolites beneficial to human health, and non-flavonoids metabolites also contributed to Tartary buckwheat's higher health-promoting value than common buckwheat. This study provides valuable information for the development of new functional foods of Tartary buckwheat.


Assuntos
Fagopyrum , Flavonoides , Humanos , Metabolômica , Sementes
3.
BMC Plant Biol ; 21(1): 132, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750309

RESUMO

BACKGROUND: Tartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways. MicroRNAs (miRNAs) have been identified as the important negative regulators of gene expression and performed crucial regulatory roles in various plant biological processes. However, whether miRNAs participate in Tartary buckwheat seed development remains unexplored. RESULTS: In this study, we first identified 26 miRNA biosynthesis genes in the Tartary buckwheat genome and described their phylogeny and expression profiling. Then we performed small RNA (sRNA) sequencing for Tartary buckwheat seeds at three developmental stages to identify the miRNAs associated with seed development. In total, 230 miRNAs, including 101 conserved and 129 novel miRNAs, were first identified in Tartary buckwheat, and 3268 target genes were successfully predicted. Among these miRNAs, 76 exhibited differential expression during seed development, and 1534 target genes which correspond to 74 differentially expressed miRNAs (DEMs) were identified. Based on integrated analysis of DEMs and their targets expression, 65 miRNA-mRNA interaction pairs (25 DEMs corresponding to 65 target genes) were identified that exhibited significantly opposite expression during Tartary buckwheat seed development, and 6 of the miRNA-mRNA pairs were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) and ligase-mediated rapid amplification of 5' cDNA ends (5'-RLM-RACE). Functional annotation of the 65 target mRNAs showed that 56 miRNA-mRNA interaction pairs major involved in cell differentiation and proliferation, cell elongation, hormones response, organogenesis, embryo and endosperm development, seed size, mineral elements transport, and flavonoid biosynthesis, which indicated that they are the key miRNA-mRNA pairs for Tartary buckwheat seed development. CONCLUSIONS: Our findings provided insights for the first time into miRNA-mediated regulatory pathways in Tartary buckwheat seed development and suggested that miRNAs play important role in Tartary buckwheat seed development. These findings will be help to study the roles and regulatory mechanism of miRNAs in Tartary buckwheat seed development.


Assuntos
Fagopyrum/crescimento & desenvolvimento , Fagopyrum/genética , MicroRNAs/fisiologia , RNA Mensageiro/fisiologia , RNA de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Evolução Molecular , Perfilação da Expressão Gênica , Reação em Cadeia da Ligase , MicroRNAs/genética , Filogenia , Desenvolvimento Vegetal/genética , RNA de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Sementes/genética
4.
BMC Plant Biol ; 20(1): 505, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148168

RESUMO

BACKGROUND: Tartary buckwheat has gained popularity in the food marketplace due to its abundant nutrients and high bioactive flavonoid content. However, its difficult dehulling process has severely restricted its food processing industry development. Rice-tartary buckwheat, a rare local variety, is very easily dehulled, but the cellular, physiological and molecular mechanisms responsible for this easy dehulling remains largely unclear. RESULTS: In this study, we integrated analyses of the comparative cellular, physiological, transcriptome, and gene coexpression network to insight into the reason that rice-tartary buckwheat is easy to dehull. Compared to normal tartary buckwheat, rice-tartary buckwheat has significantly brittler and thinner hull, and thinner cell wall in hull sclerenchyma cells. Furthermore, the cellulose, hemicellulose, and lignin contents of rice-tartary buckwheat hull were significantly lower than those in all or part of the tested normal tartary buckwheat cultivars, respectively, and the significant difference in cellulose and hemicellulose contents between rice-tartary buckwheat and normal tartary buckwheat began at 10 days after pollination (DAP). Comparative transcriptome analysis identified a total of 9250 differentially expressed genes (DEGs) between the rice- and normal-tartary buckwheat hulls at four different development stages. Weighted gene coexpression network analysis (WGCNA) of all DEGs identified a key module associated with the formation of the hull difference between rice- and normal-tartary buckwheat. In this specific module, many secondary cell wall (SCW) biosynthesis regulatory and structural genes, which involved in cellulose and hemicellulose biosynthesis, were identified as hub genes and displayed coexpression. These identified hub genes of SCW biosynthesis were significantly lower expression in rice-tartary buckwheat hull than in normal tartary buckwheat at the early hull development stages. Among them, the expression of 17 SCW biosynthesis relative-hub genes were further verified by quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSIONS: Our results showed that the lower expression of SCW biosynthesis regulatory and structural genes in rice-tartary buckwheat hull in the early development stages contributes to its easy dehulling by reducing the content of cell wall chemical components, which further effects the cell wall thickness of hull sclerenchyma cells, and hull thickness and mechanical strength.


Assuntos
Grão Comestível/metabolismo , Fagopyrum/metabolismo , Manipulação de Alimentos , Celulose/análise , Grão Comestível/química , Grão Comestível/citologia , Grão Comestível/fisiologia , Fagopyrum/citologia , Fagopyrum/genética , Fagopyrum/fisiologia , Perfilação da Expressão Gênica , Genes de Plantas , Polissacarídeos/análise , Transcriptoma
5.
Int J Mol Sci ; 20(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484314

RESUMO

Seed development is an essential and complex process, which is involved in seed size change and various nutrients accumulation, and determines crop yield and quality. Common buckwheat (Fagopyrum esculentum Moench) is a widely cultivated minor crop with excellent economic and nutritional value in temperate zones. However, little is known about the molecular mechanisms of seed development in common buckwheat (Fagopyrum esculentum). In this study, we performed RNA-Seq to investigate the transcriptional dynamics and identify the key genes involved in common buckwheat seed development at three different developmental stages. A total of 4619 differentially expressed genes (DEGs) were identified. Based on the results of Gene Ontology (GO) and KEGG analysis of DEGs, many key genes involved in the seed development, including the Ca2+ signal transduction pathway, the hormone signal transduction pathways, transcription factors (TFs), and starch biosynthesis-related genes, were identified. More importantly, 18 DEGs were identified as the key candidate genes for seed size through homologous query using the known seed size-related genes from different seed plants. Furthermore, 15 DEGs from these identified as the key genes of seed development were selected to confirm the validity of the data by using quantitative real-time PCR (qRT-PCR), and the results show high consistency with the RNA-Seq results. Taken together, our results revealed the underlying molecular mechanisms of common buckwheat seed development and could provide valuable information for further studies, especially for common buckwheat seed improvement.


Assuntos
Fagopyrum/crescimento & desenvolvimento , Fagopyrum/genética , Perfilação da Expressão Gênica/métodos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ontologia Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Agric Food Chem ; 67(40): 11262-11276, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31509416

RESUMO

Tartary buckwheat (Fagopyrum tataricum) seeds are rich in flavonoids. However, the detailed flavonoid compositions and the molecular basis of flavonoid biosynthesis in tartary buckwheat seeds remain largely unclear. Here, we performed a combined metabolite profiling and transcriptome analysis to identify flavonoid compositions and characterize genes involved in flavonoid biosynthesis in the developing tartary buckwheat seeds. In total, 234 flavonoids, including 10 isoflavones, were identified. Of these, 80 flavonoids were significantly differential accumulation during seed development. Transcriptome analysis indicated that most structural genes and some potential regulatory genes of flavonoid biosynthesis were significantly differentially expressed in the course of seed development. Correlation analysis between transcriptome and metabolite profiling shown that the expression patterns of some differentially expressed structural genes and regulatory genes were more consistent with the changes in flavonoids profiles during seed development and promoted one SG7 subgroup R2R3-MYB transcription factors (FtPinG0009153900.01) was identified as the key regulatory gene of flavonoid biosynthesis. These findings provide valuable information for understanding the mechanism of flavonoid biosynthesis in tartary buckwheat seeds and the further development of tartary buckwheat health products.


Assuntos
Fagopyrum/metabolismo , Flavonoides/biossíntese , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Fagopyrum/química , Fagopyrum/genética , Fagopyrum/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/genética , Plantas/metabolismo , Sementes/química , Sementes/genética , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA