Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(25): e2400508, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452342

RESUMO

The confinement effect, restricting materials within nano/sub-nano spaces, has emerged as an innovative approach for fundamental research in diverse application fields, including chemical engineering, membrane separation, and catalysis. This confinement principle recently presents fresh perspectives on addressing critical challenges in rechargeable batteries. Within spatial confinement, novel microstructures and physiochemical properties have been raised to promote the battery performance. Nevertheless, few clear definitions and specific reviews are available to offer a comprehensive understanding and guide for utilizing the confinement effect in batteries. This review aims to fill this gap by primarily summarizing the categorization of confinement effects across various scales and dimensions within battery systems. Subsequently, the strategic design of confinement environments is proposed to address existing challenges in rechargeable batteries. These solutions involve the manipulation of the physicochemical properties of electrolytes, the regulation of electrochemical activity, and stability of electrodes, and insights into ion transfer mechanisms. Furthermore, specific perspectives are provided to deepen the foundational understanding of the confinement effect for achieving high-performance rechargeable batteries. Overall, this review emphasizes the transformative potential of confinement effects in tailoring the microstructure and physiochemical properties of electrode materials, highlighting their crucial role in designing novel energy storage devices.

2.
Angew Chem Int Ed Engl ; 61(7): e202114220, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34806279

RESUMO

Inorganic superionic conductor holds great promise for high-performance all-solid-state lithium batteries. However, the ionic conductivity of traditional inorganic solid electrolytes (ISEs) is always unsatisfactory owing to the grain boundary resistance and large thickness. Here, a 13 µm-thick laminar framework with ≈1.3 nm interlayer channels is fabricated by self-assembling rigid, hydrophilic vermiculite (Vr) nanosheets. Then, Li0.33 La0.557 TiO3 (LLTO) precursors are impregnated in interlayer channels and afterwards in situ sintered to large-size, oriented, and defect-free LLTO crystal. We demonstrate that the confinement effect permits ordered arrangement of LLTO crystal along the c-axis (the fastest Li+ transfer direction), permitting the resultant 15 µm-thick Vr-LLTO electrolyte an ionic conductivity of 8.22×10-5  S cm-1 and conductance of 87.2 mS at 30 °C. These values are several times' higher than that of traditional LLTO-based electrolytes. Moreover, Vr-LLTO electrolyte has a compressive modulus of 1.24 GPa. Excellent cycling performance is demonstrated with all-solid-state Li/LiFePO4 battery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA