Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 311: 122645, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38850717

RESUMO

Immunotherapy through the activation of the stimulator of interferon genes (STING) signaling pathway is increasingly recognized for its robust anti-tumor efficacy. However, the effectiveness of STING activation is often compromised by inadequate anti-tumor immunity and a scarcity of primed immune cells in the tumor microenvironment. Herein, we design and fabricate a co-axial 3D-printed scaffold integrating a non-nucleotide STING agonist, SR-717, and an AKT inhibitor, MK-2206, in its respective shell and core layers, to synergistically enhance STING activation, thereby suppressing tumor recurrence and growth. SR-717 initiates the STING activation to enhance the phosphorylation of the factors along the STING pathway, while MK-2206 concurrently inhibits the AKT phosphorylation to facilitate the TBK1 phosphorylation of the STING pathway. The sequential and sustained release of SR-717 and MK-2206 from the scaffold results in a synergistic STING activation, demonstrating substantial anti-tumor efficacy across multiple tumor models. Furthermore, the scaffold promotes the recruitment and enrichment of activated dendritic cells and M1 macrophages, subsequently stimulating anti-tumor T cell activity, thereby amplifying the immunotherapeutic effect. This precise and synergistic activation of STING by the scaffold offers promising potential in tumor immunotherapy.

2.
Science ; 384(6695): 557-563, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696573

RESUMO

Hydrogels are an attractive category of biointerfacing materials with adjustable mechanical properties, diverse biochemical functions, and good ionic conductivity. Despite these advantages, their application in electronics has been restricted because of their lack of semiconducting properties, and they have traditionally only served as insulators or conductors. We developed single- and multiple-network hydrogels based on a water-soluble n-type semiconducting polymer, endowing conventional hydrogels with semiconducting capabilities. These hydrogels show good electron mobilities and high on/off ratios, enabling the fabrication of complementary logic circuits and signal amplifiers with low power consumption and high gains. We demonstrate that hydrogel electronics with good bioadhesive and biocompatible interface can sense and amplify electrophysiological signals with enhanced signal-to-noise ratios.

3.
Biomater Sci ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808607

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR) system, an emerging tool for genome editing, has garnered significant public interest for its potential in treating genetic diseases. Despite the rapid advancements in CRISPR technology, the progress in developing effective delivery strategies lags, impeding its clinical application. Extracellular nanovesicles (EVs), either in their endogenous forms or with engineered modifications, have emerged as a promising solution for CRISPR delivery. These EVs offer several advantages, including high biocompatibility, biological permeability, negligible immunogenicity, and straightforward production. Herein, we first summarize various types of functional EVs for CRISPR delivery, such as unmodified, modified, engineered virus-like particles (VLPs), and exosome-liposome hybrid vesicles, and examine their distinct intracellular pathways. Then, we outline the cutting-edge techniques for functionalizing extracellular vesicles, involving producer cell engineering, vesicle engineering, and virus-like particle engineering, emphasizing the diverse CRISPR delivery capabilities of these nanovesicles. Lastly, we address the current challenges and propose rational design strategies for their clinical translation, offering future perspectives on the development of functionalized EVs.

4.
Sci Adv ; 10(14): eadk0647, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569023

RESUMO

Conjugated polymers have demonstrated promising optoelectronic properties, but their brittleness and poor mechanical characteristics have hindered their fabrication into durable fibers and textiles. Here, we report a universal approach to continuously producing highly strong, ultratough conjugated polymer fibers using a flow-enhanced crystallization (FLEX) method. These fibers exhibit one order of magnitude higher tensile strength (>200 megapascals) and toughness (>80 megajoules per cubic meter) than traditional semiconducting polymer fibers and films, outperforming many synthetic fibers, ready for scalable production. These fibers also exhibit unique strain-enhanced electronic properties and exceptional performance when used as stretchable conductors, thermoelectrics, transistors, and sensors. This work not only highlights the influence of fluid mechanical effects on the crystallization and mechanical properties of conjugated polymers but also opens up exciting possibilities for integrating these functional fibers into wearable electronics.

5.
Biomaterials ; 302: 122349, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37844429

RESUMO

Targeting the activated epidermal growth factor receptor (EGFR) via clustered regularly interspaced short palindromic repeat (CRISPR) technology is appealing to overcome the drug resistance of hepatocellular carcinoma (HCC) towards tyrosine kinase inhibitor (TKI) therapy. However, combining these two distinct drugs using traditional liposomes results in a suboptimal synergistic anti-HCC effect due to the limited CRISPR/Cas9 delivery efficiency caused by lysosomal entrapment after endocytosis. Herein, we developed a liver-targeting gene-hybridizing-TKI fusogenic liposome (LIGHTFUL) that can achieve high CRISPR/Cas9 expression to reverse the EGFR-mediated drug resistance for enhanced TKI-based HCC therapy efficiently. Coated with a galactose-modified membrane-fusogenic lipid layer, LIGHTFUL reached the targeting liver site to fuse with HCC tumor cells, directly and efficiently transporting interior CDK5- and PLK1-targeting CRISPR/Cas9 plasmids (pXG333-CPs) into the HCC cell cytoplasm and then the cell nucleus for efficient expression. Such membrane-fusion-mediated pXG333-CP delivery resulted in effective downregulation of both CDK5 and PLK1, sufficiently inactivating EGFR to improve the anti-HCC effects of the co-delivered TKI, lenvatinib. This membrane-fusion-participant codelivery strategy optimized the synergetic effect of CRISPR/Cas9 and TKI combinational therapy as indicated by the 0.35 combination index in vitro and the dramatic reduction of subcutaneous and orthotopic TKI-insensitive HCC tumor growth in mice. Therefore, the established LIGHTFUL provides a unique co-delivery platform to combine gene editing and TKI therapies for enhanced synergetic therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Neoplasias Hepáticas/terapia , Nanomedicina , Tirosina
6.
Med Rev (2021) ; 3(1): 4-30, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37724108

RESUMO

The complexity of the tumor microenvironment (TME) severely hinders the therapeutic effects of various cancer treatment modalities. The TME differs from normal tissues owing to the presence of hypoxia, low pH, and immune-suppressive characteristics. Modulation of the TME to reverse tumor growth equilibrium is considered an effective way to treat tumors. Recently, polymeric nanomedicines have been widely used in cancer therapy, because their synthesis can be controlled and they are highly modifiable, and have demonstrated great potential to remodel the TME. In this review, we outline the application of various stimuli responsive polymeric nanomedicines to modulate the TME, aiming to provide insights for the design of the next generation of polymeric nanomedicines and promote the development of polymeric nanomedicines for cancer therapy.

7.
Biomater Sci ; 11(14): 4774-4788, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37249402

RESUMO

Lipid-based nanoparticles have made a breakthrough in clinical disease as delivery systems due to their biocompatibility, thermal and long-term stability, high loading ability, simplicity of preparation, inexpensive production costs, and scalable manufacturing production. In particular, during the COVID-19 pandemic, this delivery system served as a vital vaccine component for virus confrontation. To obtain effective drug delivery, lipid-based nanoparticles should reach the desired sites with high efficiency, enter target cells, and release drugs. The structures and compositions of lipid-based nanoparticles can be modified to regulate these behaviors in vivo to enhance the therapeutic effects. Herein, we briefly review the development of lipid-based nanoparticles, from simple self-assembled nanovesicle-structured liposomes to multifunctional lipid nanoparticles. Subsequently, we summarize the strategies that regulate their tissue distribution, cell internalization, and drug release, highlighting the importance of the structural and componential design. We conclude with insights for further research to advance lipid-based nanotechnology.


Assuntos
COVID-19 , Nanopartículas , Humanos , Lipossomos , Pandemias , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Lipídeos/química
8.
Bioact Mater ; 28: 112-131, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37250866

RESUMO

Reactive oxygen species (ROS)-associated oxidative stress, inflammation storm, and massive hepatocyte necrosis are the typical manifestations of acute liver failure (ALF), therefore specific therapeutic interventions are essential for the devastating disease. Here, we developed a platform consisting of versatile biomimetic copper oxide nanozymes (Cu NZs)-loaded PLGA nanofibers (Cu NZs@PLGA nanofibers) and decellularized extracellular matrix (dECM) hydrogels for delivery of human adipose-derived mesenchymal stem/stromal cells-derived hepatocyte-like cells (hADMSCs-derived HLCs) (HLCs/Cu NZs@fiber/dECM). Cu NZs@PLGA nanofibers could conspicuously scavenge excessive ROS at the early stage of ALF, and reduce the massive accumulation of pro-inflammatory cytokines, herein efficiently preventing the deterioration of hepatocytes necrosis. Moreover, Cu NZs@PLGA nanofibers also exhibited a cytoprotection effect on the transplanted HLCs. Meanwhile, HLCs with hepatic-specific biofunctions and anti-inflammatory activity acted as a promising alternative cell source for ALF therapy. The dECM hydrogels further provided the desirable 3D environment and favorably improved the hepatic functions of HLCs. In addition, the pro-angiogenesis activity of Cu NZs@PLGA nanofibers also facilitated the integration of the whole implant with the host liver. Hence, HLCs/Cu NZs@fiber/dECM performed excellent synergistic therapeutic efficacy on ALF mice. This strategy using Cu NZs@PLGA nanofiber-reinforced dECM hydrogels for HLCs in situ delivery is a promising approach for ALF therapy and shows great potential for clinical translation.

9.
ACS Appl Mater Interfaces ; 15(4): 4911-4923, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656977

RESUMO

Biomaterial-based implants hold great potential for postoperative cancer treatment due to the enhanced drug dosage at the disease site and decreased systemic toxicity. However, the elaborate design of implants to avoid complicated chemical modification and burst release remains challenging. Herein, we report a three-dimensional (3D) printed hydrogel scaffold to enable sustained release of drugs for postoperative synergistic cancer therapy. The hydrogel scaffold is composed of Pluronic F127 and sodium alginate (SA) as well as doxorubicin (DOX) and copper ions (F127-SA/Cu-DOX hydrogel scaffold). Benefiting from the coordination of Cu(II) with both SA and DOX, burst release of DOX can be overcome, and prolonged release time can be achieved. The therapeutic efficiency can be adjusted by altering the amount of DOX and Cu(II) in the scaffolds. Moreover, apoptosis and ferroptosis of cancer cells can be induced through the combination of chemotherapy and chemodynamic therapy. In addition, DOX supplies excess hydrogen peroxide to enhance the efficiency of Cu-based chemodynamic therapy. When implanted in the resection site, hydrogel scaffolds effectively inhibit tumor growth. Overall, this study may offer a new strategy for fabricating local implants with synergistic therapeutic performance for preventing postoperative cancer recurrence.


Assuntos
Cobre , Hidrogéis , Hidrogéis/química , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Impressão Tridimensional
10.
Biomaterials ; 293: 121942, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36512863

RESUMO

Tumor-positive resection margins after surgery can result in tumor recurrence and metastasis. Although adjuvant postoperative radiotherapy and chemotherapy have been adopted in clinical practice, they lack efficacy and result in unavoidable side effects. Herein, a self-intensified in-situ therapy approach using electrospun fibers loaded with a biomimetic nanozyme and doxorubicin (DOX) is developed. The fabricated PEG-coated zeolite imidazole framework-67 (PZIF67) is demonstrated as a versatile nanozyme triggering reactions in cancer cells based on endogenous H2O2 and •O2-. The PZIF67-generated •OH induces reactive oxygen species (ROS) overload, implementing chemodynamic therapy (CDT). The O2 produced by PZIF67 inhibits the expression of hypoxia-up-regulated proteins, thereby suppressing tumor progression. PZIF67 also catalyzes the degradation of glutathione, further disturbing the intracellular redox homeostasis and enhancing CDT. Furthermore, the introduced DOX not only kills cancer cells individually, but also replenishes the continuously consumed substrates for PZIF67-catalyzed reactions. The PZIF67-weakened drug resistance strengthens the cytotoxicity of DOX. The combined application of PZIF67 and DOX also suppresses metastasis-associated genes. Both in vitro and in vivo results demonstrate that the self-intensified synergy of PZIF67 and DOX on electrospun fibers efficiently prevents postsurgical tumor recurrence and metastasis, offering a feasible therapeutic regimen for operable malignant tumors.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Biomimética , Recidiva Local de Neoplasia/prevenção & controle , Recidiva Local de Neoplasia/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Glutationa/metabolismo , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
12.
Nano Res ; 15(10): 9125-9134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915748

RESUMO

Myocardial ischemia reperfusion (IR) injury is closely related to the overwhelming inflammation in the myocardium. Herein, cardiomyocyte-targeted nanotherapeutics were developed for the reactive oxygen species (ROS)-ultrasensitive co-delivery of dexamethasone (Dex) and RAGE small interfering RNA (siRAGE) to attenuate myocardial inflammation. PPTP, a ROS-degradable polycation based on PGE2-modified, PEGylated, ditellurium-crosslinked polyethylenimine (PEI) was developed to surface-decorate the Dex-encapsulated mesoporous silica nanoparticles (MSNs), which simultaneously condensed siRAGE and gated the MSNs to prevent the Dex pre-leakage. Upon intravenous injection to IR-injured rats, the nanotherapeutics could be efficiently transported into the inflamed cardiomyocytes via PGE2-assisted recognition of over-expressed E-series of prostaglandin (EP) receptors on the cell membranes. Intracellularly, the over-produced ROS degraded PPTP into small segments, promoting the release of siRAGE and Dex to mediate effective RAGE silencing (72%) and cooperative antiinflammatory effect. As a consequence, the nanotherapeutics notably suppressed the myocardial fibrosis and apoptosis, ultimately recovering the systolic function. Therefore, the current nanotherapeutics represent an effective example for the co-delivery and on-demand release of nucleic acid and chemodrug payloads, and might find promising utilities toward the synergistic management of myocardial inflammation. Electronic Supplementary Material: Supplementary material (experimental methods, RNA and primer sequences, 1H NMR spectra, FTIR spectrum, TEM images, zeta potential, drug loading content, RNA and drug release, cytotoxicity, etc.) is available in the online version of this article at 10.1007/s12274-022-4553-6.

13.
ACS Appl Mater Interfaces ; 14(24): 27525-27537, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35687834

RESUMO

Tumor recurrence is a critical conundrum in the postoperative therapy, on account of severe bleeding with disseminated tumor cells, residual tumor cells, and the rich nutrient and oxygen supply transported to tumors by the abundant blood vessels. Biodegradable drug-loaded implants, inserted in the resection cavity right away upon the surgery, possess bleeding prevention and efficient chemotherapeutic capabilities, considered to be a promising strategy to efficiently inhibit the recurrence of the solid tumor. Here, we developed a sandwich-like composite consisting of the combretastatin A4 (CA4)-loaded 3D-printed scaffold and doxorubicin (DOX)-loaded electrospun fiber (Scaffold-CA4@Fiber-DOX), presenting hemostatic, chemotherapeutic, and antibacterial potencies. The lyophilized 3D-printed scaffold with a porous structure rapidly absorbed and clotted the blood cells and disseminated tumor cells to prevent bleeding and tumor metastasis. Subsequently, the preferentially released CA4 from the scaffold disrupted the microtubules of the vascular endothelial cell, resulting in vascular deformation and consequent insufficient nutrient supply to the solid tumor. The sustained release of DOX from the sandwiched electrospun fiber dramatically inhibited the peripheral tumor cell proliferation. This all-in-one multifunctional implant system, combining efficient vascular disruption and chemotherapy, provides a promising strategy for postoperative tumor therapy.


Assuntos
Recidiva Local de Neoplasia , Estilbenos , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Estilbenos/farmacologia
14.
J Nanobiotechnology ; 20(1): 266, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672826

RESUMO

Surgical resection to achieve tumor-free margins represents a difficult clinical scenario for patients with hepatocellular carcinoma. While post-surgical treatments such as chemotherapy and radiotherapy can decrease the risk of cancer recurrence and metastasis, growing concerns about the complications and side effects have promoted the development of implantable systems for locoregional treatment. Herein, 3D printed hydrogel scaffolds (designed as Gel-SA-CuO) were developed by incorporating one agent with multifunctional performance into implantable devices to simplify the fabrication process for efficiently inhibiting postoperative tumor recurrence. CuO nanoparticles can be effectively controlled and sustained released during the biodegradation of hydrogel scaffolds. Notably, the released CuO nanoparticles not only function as the reservoir for releasing Cu2+ to produce intracellular reactive oxygen species (ROS) but also serve as photothermal agent to generate heat. Remarkably, the heat generated by photothermal conversion of CuO nanoparticles further promotes the efficiency of Fenton-like reaction. Additionally, ferroptosis can be induced through Cu2+-mediated GSH depletion via the inactivation of GPX4. By implanting hydrogel scaffolds in the resection site, efficient inhibition of tumor recurrence after primary resection can be achieved in vivo. Therefore, this study may pave the way for the development of advanced multifunctional implantable platform for eliminating postoperative relapsable cancers.


Assuntos
Ferroptose , Neoplasias Hepáticas , Nanopartículas , Linhagem Celular Tumoral , Glutationa , Humanos , Hidrogéis , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/prevenção & controle , Impressão Tridimensional
15.
J Mater Chem B ; 10(26): 4907-4934, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35712990

RESUMO

Despite the significant progress in the discovery of biomarkers and the exploitation of technologies for prostate cancer (PCa) detection and diagnosis, the initial screening of these PCa-related biomarkers using current technologies is always demanded with a bioassay or probe with high sensitivity, specificity, and noninvasiveness. Nanomaterials have emerged as novel alternative probes for PCa detection and diagnosis because of their nanoscale size, large ratio of surface area to volume, special surface chemistry, and particularly distinct physical properties. By selecting appropriate nanomaterials, a series of nanosensors or nanoprobes could be constructed for PCa bioassay with high sensitivity, selectivity, and accuracy. Meanwhile, nanosized particles also show significant potential to transport directors or contrast agents to desired sites in vivo for accurate and safe visualization of PCa tissues. Based on these advancements, this review will first outline the recent exploration of PCa biomarkers and the development of technologies for clinical PCa diagnosis. Then, the commonly used nanomaterials for PCa detection and diagnosis will be summarized. Finally, the current challenges and prospects of nanoparticle-based PCa detection and diagnosis methods are also discussed.


Assuntos
Nanoestruturas , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Sensibilidade e Especificidade
16.
Adv Healthc Mater ; 11(9): e2101651, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34706166

RESUMO

Peptide-based cancer vaccines offer production and safety advantages but have had limited clinical success due to their intrinsic instability, rapid clearance, and low cellular uptake. Nanoparticle-based delivery vehicles can improve the in vivo stability and cellular uptake of peptide antigens. Here, a well-defined, self-assembling mannosylated polymer is developed for anticancer peptide antigen delivery. The amphiphilic polymer is prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization, and the peptide antigens are conjugated to the pH-sensitive hydrophobic block through the reversible disulfide linkage for selective release after cell entry. The polymer-peptide conjugates self-assemble into sub-100 nm micelles at physiological pH and dissociate at endosomal pH. The mannosylated micellar corona increases the accumulation of vaccine cargoes in the draining inguinal lymph nodes and facilitates nanoparticle uptake by professional antigen presenting cells. In vivo studies demonstrate that the mannosylated micelle formulation improves dendritic cell activation and enhances antigen-specific T cell responses, resulting in higher antitumor immunity in tumor-bearing mice compared to free peptide antigen. The mannosylated polymer is therefore a simple and promising platform for the delivery of peptide cancer vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Antígenos , Sistemas de Liberação de Medicamentos , Camundongos , Micelas , Neoplasias/terapia , Peptídeos , Polímeros/química , Vacinas de Subunidades Antigênicas
17.
Small Methods ; 5(5): e2001191, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34928094

RESUMO

Although adoptive transfer of therapeutic cells to cancer patients is demonstrated with great success and fortunately approved for the treatment of leukemia and B-cell lymphoma, potential issues, including the unclear mechanism, complicated procedures, unfavorable therapeutic efficacy for solid tumors, and side effects, still hinder its extensive applications. The explosion of nanotechnology recently has led to advanced development of novel strategies to address these challenges, facilitating the design of nano-therapeutics to improve adoptive cell therapy (ACT) for cancer treatment. In this review, the emerging nano-enabled approaches, that design multiscale artificial antigen-presenting cells for cell proliferation and stimulation in vitro, promote the transducing efficiency of tumor-targeting domains, engineer therapeutic cells for in vivo imaging, tumor infiltration, and in vivo functional sustainability, as well as generate tumoricidal T cells in vivo, are summarized. Meanwhile, the current challenges and future perspectives of the nanostrategy-based ACT for cancer treatment are also discussed in the end.


Assuntos
Imunoterapia Adotiva/métodos , Nanopartículas/química , Neoplasias/terapia , Animais , Antígenos/química , Antígenos/imunologia , Humanos , Lipídeos/química , Magnetismo , Nanopartículas/toxicidade , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
Biomaterials ; 277: 121076, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461456

RESUMO

Melittin, the primary peptide component of bee venom, is a potent cytolytic anti-cancer peptide with established anti-tumor activity. However, practical application of melittin in oncology is hampered by its strong, nonspecific hemolytic activity and intrinsic instability. To address these shortcomings, delivery systems are used to overcome the drawbacks of melittin and facilitate its safe delivery. Yet, a recent study revealed that encapsulated melittin remains immunogenic and can act as an adjuvant to elicit a fatal antibody immune response against the delivery carrier. We discovered that substitution of l-amino acids with d-amino acids mitigates this problem: D-melittin nanoformulations induce significantly decreased immune response, resulting in excellent safety without compromising cytolytic potential. We now report the first application of D-melittin and its micellar formulations for cancer treatment. D-melittin was delivered by a pH-sensitive polymer carrier that (i) forms micellar nanoparticles at normal physiological conditions, encapsulating melittin, and (ii) dissociates at endosomal pH, restoring melittin activity. D-melittin micelles (DMM) exhibits significant cytotoxicity and induces hemolysis in a pH-dependent manner. In addition, DMM induce immunogenic cell death, revealing its potential for cancer immunotherapy. Indeed, in vivo studies demonstrated the superior safety profile of DMM over free peptide and improved efficacy at prohibiting tumor growth. Overall, we present the first application of micellar D-melittin for cancer therapy. These findings establish a new strategy for safe, systemic delivery of melittin, unlocking a potential pathway toward clinical translation for cytotoxic peptides as anti-cancer agents. which can revolutionize in vivo delivery of therapeutic peptides and peptide antigens.


Assuntos
Antineoplásicos , Nanopartículas , Antineoplásicos/uso terapêutico , Meliteno , Micelas , Polímeros
20.
Small ; 17(23): e2007727, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33852769

RESUMO

Hepatic ischemia-reperfusion injury (IRI), in which an insufficient oxygen supply followed by reperfusion leads to an inflammatory network and oxidative stress in disease tissue to cause cell death, always occurs after liver transplantations and sections. Although pharmacological treatments favorably prevent or protect the liver against experimental IRI, there have been few successes in clinical applications for patient benefits because of the incomprehension of complicated IRI-induced signaling events as well as short blood circulation time, poor solubility, and severe side reactions of most antioxidants and anti-inflammatory drugs. Nanomaterials can achieve targeted delivery and controllable release of contrast agents and therapeutic drugs in desired hepatic IRI regions for enhanced imaging sensitivity and improved therapeutic effects, emerging as novel alternative approaches for hepatic IRI diagnosis and therapy. In this review, the application of nanotechnology is summarized in the management of hepatic IRI, including nanomaterial-assisted hepatic IRI diagnosis, nanoparticulate systems-mediated remission of reactive oxygen species-induced tissue injury, and nanoparticle-based targeted drug delivery systems for the alleviation of IRI-related inflammation. The current challenges and future perspectives of these nanoenabled strategies for hepatic IRI treatment are also discussed.


Assuntos
Traumatismo por Reperfusão , Nanomedicina Teranóstica , Humanos , Fígado/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA