Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Diabetes ; 15(3): 502-518, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591083

RESUMO

BACKGROUND: Jianpi Gushen Huayu Decoction (JPGS) has been used to clinically treat diabetic nephropathy (DN) for many years. However, the protective mechanism of JPGS in treating DN remains unclear. AIM: To evaluate the therapeutic effects and the possible mechanism of JPGS on DN. METHODS: We first evaluated the therapeutic potential of JPGS on a DN mouse model. We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics. Furthermore, we examined the effects of JPGS on c-Jun N-terminal kinase (JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3). RESULTS: The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress. Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice. A total of 51 differential metabolites were screened. Pathway analysis results indicated that nine pathways significantly changed between the control and model groups, while six pathways significantly altered between the model and JPGS groups. Pathways related to cysteine and methionine metabolism; alanine, tryptophan metabolism; aspartate and glutamate metabolism; and riboflavin metabolism were identified as the key pathways through which JPGS affects DN. Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors. CONCLUSION: JPGS could markedly treat mice with streptozotocin (STZ)-induced DN, which is possibly related to the regulation of several metabolic pathways found in kidneys. Furthermore, JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathway-mediated apoptosis in DN mice.

2.
J Diabetes Res ; 2024: 9990304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523631

RESUMO

Background: Diabetic nephropathy (DN), one of the most frequent complications of diabetes mellitus, is a leading cause of end-stage renal disease. However, the current treatment methods still cannot effectively halt the progression of DN. Jian-Pi-Gu-Shen-Hua-Yu (JPGS) decoction can be used for the treatment of chronic kidney diseases such as DN, but the specific mechanism of action has not been fully elucidated yet. Purpose: The aim of this study is to clarify whether JPGS alleviates the progression of diabetic nephropathy by inhibiting ferroptosis. Materials and Methods: We established a DN mouse model to investigate the therapeutic effect of JPGS in a DN mouse model. Subsequently, we examined the effects of JPGS on ferroptosis- and glutathione peroxidase 4 (GPX4) pathway-related indices. Finally, we validated whether JPGS inhibited ferroptosis in DN mice via the GPX4 pathway using GPX4 inhibitor and ferroptosis inhibitors. Results: The results indicate that JPGS has a therapeutic effect on DN mice by improving kidney function and reducing inflammation. Additionally, JPGS treatment decreased iron overload and oxidative stress levels while upregulating the expression of GPX4 pathway-related proteins. Moreover, JPGS demonstrated a similar therapeutic effect as Fer-1 in the context of DN treatment, and RSL3 was able to counteract the therapeutic effect of JPGS and antiferroptotic effect. Conclusion: JPGS has significant therapeutic and anti-inflammatory effects on DN mice, and its mechanism is mainly achieved by upregulating the expression of GPX4 pathway-related proteins, thereby alleviating iron overload and ultimately reducing ferroptosis.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Sobrecarga de Ferro , Animais , Camundongos , Nefropatias Diabéticas/tratamento farmacológico , Modelos Animais de Doenças , Inflamação , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico
3.
J Neuroimmunol ; 387: 578281, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198981

RESUMO

BACKGROUND: Polygalasaponin F (PGSF), an oleanane triterpenoid saponin extracted from Polygala japonica, has been demonstrated with neuroprotective effect. However, the therapeutic effects and mechanisms of PGSF on focal ischemia remain unknown; METHODS: In this study, male Sprague Dawley (SD) rats aged 6-8 weeks were initially selected to establish a rat model of middle cerebral artery occlusion (MCAO) to evaluate the therapeutic effect of PGSF intervention and to investigate the impact of PGSF on the thioredoxin-interacting protein/NOD-, LRR-, and pyrin domain-containing protein 3 (TXNIP/NLRP3) inflammatory pathway. Secondly, brain neuron cells were isolated, and the cells received oxygen-glucose deprivation/reoxygenation (OGD/R) culture to establish the cell injury model in vitro. The mechanism of PGSF on the TXNIP/NLRP3 pathway was further validated; RESULTS: Our results showed that PGSF treatment reduced neurological scores, brain tissue water content and infarct volume and ameliorated the pathological changes in cerebral cortex in MCAO-induced focal ischemia rats. The TNF-α, IL-1ß and IL-6 levels decreased in MCAO-induced focal ischemia rats after PGSF treatment. Moreover, PGSF down-regulated the protein expressions of TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1ß, and IL-18 in MCAO-induced focal ischemia rats. Meanwhile, PGSF treatment inhibited apoptosis, and reduced the levels of ROS, inflammatory cytokine and TXNIP/NLRP3 pathway-related proteins (TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1ß, and IL-18) in OGD/R-induced neuronal injury cells. Finally, PGSF treatment also disrupted the interaction between NLRP3 and TXNIP in vitro; CONCLUSIONS: Our study demonstrated the therapeutic effects of PGSF on MCAO-induced focal ischemia rats. Moreover, the neuroprotective mechanism of PGSF on focal ischemia was associated with the inhibition of TXNIP/NLRP3 signaling pathway.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Saponinas , Triterpenos , Ratos , Animais , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interleucina-18 , Ratos Sprague-Dawley , Inflamassomos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Transdução de Sinais , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia Encefálica/metabolismo , Caspase 1/metabolismo , Proteínas de Ciclo Celular
4.
Biomed Chromatogr ; 38(1): e5763, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858975

RESUMO

Alisol B 23-acetate (AB23A) has been demonstrated to have beneficial effects on nonalcoholic steatohepatitis (NASH). However, the mechanisms of AB23A on NASH remain unclear. This study aimed to investigate the mechanisms underlying the metabolic regulatory effects of AB23A on NASH. We used AB23A to treat mice with NASH, which was induced by a methionine and choline deficient (MCD) diet. We initially investigated therapeutic effect and resistance to oxidation and inflammation of AB23A on NASH. Subsequently, we performed untargeted metabolomic analyses and relative validation assessments to evaluate the metabolic regulatory effects of AB23A. AB23A reduced lipid accumulation, ameliorated oxidative stress and decreased pro-inflammatory cytokines in the liver. Untargeted metabolomic analysis found that AB23A altered the metabolites of liver. A total of 55 differential metabolites and three common changed pathways were screened among the control, model and AB23A treatment groups. Further tests validated the effects of AB23A on modulating common changed pathway-involved factors. AB23A treatment can ameliorate NASH by inhibiting oxidative stress and inflammation. The mechanism of AB23A on NASH may be related to the regulation of alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, and arginine biosynthesis pathways.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metionina/metabolismo , Metionina/farmacologia , Colina , Fígado/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacologia , Dieta , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
Curr Drug Metab ; 24(10): 709-722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936469

RESUMO

INTRODUCTION: Crocin is one of the main components of Crocus sativus L. and can alleviate oxidative stress and inflammation in diabetic nephropathy (DN). However, the specific mechanism by which crocin treats DN still needs to be further elucidated. METHOD: In the present study, a mouse model of DN was first established to investigate the therapeutic effect of crocin on DN mice. Subsequently, non-targeted metabolomics techniques were used to analyze the mechanisms of action of crocin in the treatment of DN. The effects of crocin on CYP4A11/PPARγ and TGF-ß/Smad pathway were also investigated. RESULT: Results showed that crocin exhibited significant therapeutic and anti-inflammatory, and anti-oxidative effects on DN mice. In addition, the non-targeted metabolomics results indicated that crocin treatment affected several metabolites in kidney. These metabolites were mainly associated with biotin metabolism, riboflavin metabolism, and arachidonic acid metabolism. Furthermore, crocin treatment upregulated the decreased levels of CYP4A11 and phosphorylated PPARγ, and reduced the increased levels of TGF-ß1 and phosphorylated Smad2/3 in the kidneys of DN mice. CONCLUSION: In conclusion, our study validated the considerable therapeutic, anti-inflammatory, and antioxidative impacts of crocin on DN mice. The mechanism of crocin treatment may be related to the regulation of biotin riboflavin and arachidonic acid metabolism, the activation of CYP4A11/PPARγ pathway, and the inhibition of TGF-ß/Smad pathway in the kidney.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/uso terapêutico , PPAR gama/farmacologia , PPAR gama/uso terapêutico , Ácido Araquidônico/farmacologia , Ácido Araquidônico/uso terapêutico , Biotina/metabolismo , Biotina/farmacologia , Biotina/uso terapêutico , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Riboflavina/metabolismo , Riboflavina/farmacologia , Riboflavina/uso terapêutico , Diabetes Mellitus/tratamento farmacológico
6.
J Diabetes Res ; 2023: 9164883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840577

RESUMO

Diabetic nephropathy (DN) is a metabolic disease wherein chronic hyperglycemia triggers various renal cell dysfunctions, eventually leading to progressive kidney failure. Rosa laevigata Michx. is a traditional Chinese herbal medicine. Many studies have confirmed its antioxidative, anti-inflammatory, and renoprotective effects. However, the effects and mechanisms of Rosa laevigata Michx. polysaccharide (RLP) in DN remain unclear. In this study, a DN mouse model was established to investigate the therapeutic effect of RLP on DN mice. Then, nontargeted metabolomics was used to analyze the potential mechanism of RLP in the treatment of DN. Finally, the effects of RLP on ferroptosis and the PI3K/AKT pathway were investigated. The results demonstrated that RLP effectively alleviated renal injury and reduced inflammation and oxidative stress in the kidney. In addition, nontargeted metabolomic analysis indicated that RLP could modulate riboflavin metabolism and tryptophan metabolism in DN mice. Notably, ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney were also ameliorated following RLP treatment. In conclusion, this study confirmed that RLP had a significant therapeutic effect on DN mice. Furthermore, RLP treatment modulated tryptophan metabolism and inhibited ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Rosa , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rosa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Triptofano/farmacologia , Triptofano/uso terapêutico , Transdução de Sinais , Apoptose
7.
Front Endocrinol (Lausanne) ; 14: 1159707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732114

RESUMO

Introduction: Yu-Ye Tang (YYT) is a classical formula widely used in treatment of type 2 diabetes mellitus (T2DM). However, the specific mechanism of YYT in treating T2DM is not clear. Methods: The aim of this study was to investigate the therapeutic effect of YYT on T2DM by establishing a rat model of T2DM. The mechanism of action of YYT was also explored through investigating gut microbiota and serum metabolites. Results: The results indicated YYT had significant therapeutic effects on T2DM. Moreover, YYT could increase the abundance of Lactobacillus, Candidatus_Saccharimonas, UCG-005, Bacteroides and Blautia while decrease the abundance of and Allobaculum and Desulfovibrio in gut microbiota of T2DM rats. Nontargeted metabolomics analysis showed YYT treatment could regulate arachidonic acid metabolism, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, glycerophospholipid metabolism, pentose and glucuronate interconversions, phenylalanine metabolism, steroid hormone biosynthesis, terpenoid backbone biosynthesis, tryptophan metabolism, and tyrosine metabolism in T2DM rats. Discussion: In conclusion, our research showed that YYT has a wide range of therapeutic effects on T2DM rats, including antioxidative and anti-inflammatory effects. Furthermore, YYT corrected the altered gut microbiota and serum metabolites in T2DM rats. This study suggests that YYT may have a therapeutic impact on T2DM by regulating gut microbiota and modulating tryptophan and glycerophospholipid metabolism, which are potential key pathways in treating T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Ratos , RNA Ribossômico 16S , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Triptofano , Metabolômica , Glicerofosfolipídeos
8.
Phytomedicine ; 118: 154937, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393831

RESUMO

BACKGROUND: Polygala japonica Houtt. (PJ) has been demonstrated with several biological potentials such as lipid-lowering and anti-inflammatory effects. However, the effects and mechanisms of PJ on nonalcoholic steatohepatitis (NASH) remain unclear. PURPOSE: The aim of this study was to evaluate the effects of PJ on NASH and illustrate the mechanism based on modulating gut microbiota and host metabolism. MATERIALS AND METHODS: NASH mouse model was induced using methionine and choline deficient (MCD) diet and orally treated with PJ. The therapeutic, anti-inflammatory, and anti-oxidative effects of PJ on mice with NASH were firstly assessed. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of PJ on the metabolites in liver and feces were explored by untargeted metabolomics. RESULTS: The results indicated that PJ could improve hepatic steatosis, liver injury, inflammatory response, and oxidative stress in NASH mice. PJ treatment also affected the diversity of gut microbiota and changed the relative abundances of Faecalibaculum. Lactobacillus, Muribaculaceae, Dubosiella, Akkermansia, Lachnospiraceae_NK4A136_group, and Turicibacter in NASH mice. In addition, PJ treatment modulated 59 metabolites both in liver and feces. Metabolites involved in histidine, and tryptophan metabolism pathways were identified as the key metabolites according to the correlation analysis between differential gut microbiota and metabolites. CONCLUSION: Our study demonstrated the therapeutic, anti-inflammatory and anti-oxidative potentials of PJ on NASH. The mechanisms of PJ treatment were related to the improvement of gut microbiota dysbiosis and the regulation of histidine and tryptophan metabolism.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Polygala , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polygala/genética , RNA Ribossômico 16S , Histidina/metabolismo , Histidina/farmacologia , Histidina/uso terapêutico , Triptofano/metabolismo , Triptofano/farmacologia , Triptofano/uso terapêutico , Fígado , Fezes , Camundongos Endogâmicos C57BL
9.
Biomed Pharmacother ; 165: 115086, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418978

RESUMO

Diabetic nephropathy (DN) is one of the main complications of diabetes. However, effective therapy to block or slow down the progression of DN is still lacking. San-Huang-Yi-Shen capsule (SHYS) has been shown to significantly improve renal function and delay the progression of DN. However, the mechanism of SHYS on DN is still unclear. In this study, we established a mouse model of DN. Then, we investigated the anti-ferroptotic effects of SHYS including the reduction of iron overload and the activation of cystine/GSH/GPX4 axis. Finally, we used a GPX4 inhibitor (RSL3) and ferroptosis inhibitor (ferrostatin-1) to determine whether SHYS ameliorates DN through inhibiting ferroptosis. The results showed that SHYS treatment was effective for mice with DN in terms of improving renal function, and reducing inflammation and oxidative stress. Besides, SHYS treatment reduced iron overload and upregulated the expression of cystine/GSH/GPX4 axis-related factors in kidney. Moreover, SHYS exhibited similar therapeutic effect on DN as ferrostatin-1, RSL3 could abolish the therapeutic and anti- ferroptotic effects of SHYS on DN. In conclusion, SHYS can be used to treat mice with DN. Furthermore, SHYS could inhibit ferroptosis in DN through reducing iron overload and upregulating the expression of cystine/GSH/GPX4 axis.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Sobrecarga de Ferro , Animais , Camundongos , Nefropatias Diabéticas/tratamento farmacológico , Cistina
10.
Curr Drug Metab ; 24(4): 270-282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038712

RESUMO

BACKGROUND: Polygonatum sibiricum polysaccharide (PSP) can improve insulin resistance and inhibit oxidative stress. However, the detailed anti-diabetic mechanism of PSP is still poorly defined. METHODS: In this study, the anti-diabetic, anti-inflammatory and anti-oxidative effects of PSP were evaluated on a type 2 diabetes mellitus (T2DM) rat model. Furthermore, we investigated the changes in gut microbiota and serum metabolites in T2DM rats after PSP treatment through 16S rRNA sequencing and untargeted metabolomics analyses. RESULTS: Our results showed that PSP exhibited significant anti-diabetic, anti-inflammatory and anti-oxidative effects on T2DM model rats. In addition, 16S rRNA sequencing showed that PSP treatment decreased the Firmicutes/ Bacteroidetes ratio in the gut. At the genus level, PSP treatment increased the relative abundances of Blautia, Adlercreutzia, Akkermansia and Parabacteroides while decreasing Prevotella, Megamonas funiformis and Escherichia. Untargeted metabolomics analysis revealed that PSP treatment could affect 20 metabolites, including hexanoylglycine, (±)5(6)-DiHET, ecgonine, L-cysteine-S-sulfate, epitestosterone, (±)12(13)-DiHOME, glutathione, L-ornithine, Dmannose 6-phosphate, L-fucose, L-tryptophan, L-kynurenine, serotonin, melatonin, 3-hydroxyanthranilic acid, xylitol, UDP-D-glucuronate, hydroxyproline, 4-guanidinobutyric acid, D-proline in T2DM model rats, these metabolites are associated with arginine and proline metabolism, tryptophan metabolism, amino sugar and nucleotide sugar metabolism, pentose and glucuronate interconversions, glutathione metabolism, arginine biosynthesis, ascorbate and aldarate metabolism pathways. Spearman correlation analysis results showed that the modulatory effects of PSP on the arginine and proline metabolism, tryptophan metabolism, and glutathione metabolism pathways were related to the regulation of Prevotella, Megamonas funiformis, Escherichia, Blautia and Adlercreutzia. CONCLUSION: Our research revealed the therapeutic, anti-inflammatory and anti-oxidative effects of PSP on T2DM. The mechanisms of PSP on T2DM are associated with improving the dysbiosis of gut microbiota and regulating arginine and proline metabolism, tryptophan metabolism, and glutathione metabolism in serum.


Assuntos
Diabetes Mellitus Tipo 2 , Polygonatum , Ratos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , RNA Ribossômico 16S , Triptofano , Metabolômica , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Anti-Inflamatórios
11.
J Diabetes Res ; 2022: 2640209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425593

RESUMO

San-Huang-Yi-Shen capsule (SHYS) has been used in the treatment of diabetic kidney disease (DKD) in clinics. However, the mechanism of SHYS on DKD remains unclear. In this study, we used a high-fat diet combined with streptozocin (STZ) injection to establish a rat model of DKD, and different doses of SHYS were given by oral gavage to determine the therapeutic effects of SHYS on DKD. Then, we studied the effects of SHYS on PINK1/Parkin-mediated mitophagy and the activation of NLRP3 inflammasome to study the possible mechanisms of SHYS on DKD. Our result showed that SHYS could alleviate DKD through reducing the body weight loss, decreasing the levels of fasting blood glucose (FBG), and improving the renal function, insulin resistance (IR), and inhibiting inflammatory response and oxidative stress in the kidney. Moreover, transmission electron microscopy showed SHYS treatment improved the morphology of mitochondria in the kidney. In addition, western blot and immunoflourescence staining showed that SHYS treatment induced the PINK1/Parkin-mediated mitophagy and inhibited the activation of NLRP3 signaling pathway. In conclusion, our study demonstrated the therapeutic effects of SHYS on DKD. Additionally, our results indicated that SHYS promoted PINK1/Parkin-mediated mitophagy and inhibited NLRP3 inflammasome activation to improve mitochondrial injury and inflammatory responses.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ratos , Animais , Mitofagia/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologia , Transdução de Sinais
12.
Front Cell Infect Microbiol ; 12: 1051962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439213

RESUMO

Baihu Rensheng decoction (BHRS) can effectively improve insulin resistance (IR) and decrease blood glucose in diabetic patients. However, its specific mechanism of action remains unclear. In this study, a type 2 diabetes mellitus (T2DM) rat model was established using a high-fat diet combined with streptozotocin (STZ) injection and treated with BHRS. Firstly, the therapeutic and anti-inflammatory effects of BHRS on T2DM were evaluated. Secondly, the effects of BHRS on gut permeability were evaluated and western blot was used to detect the changes of TLR4/NF-κB pathway-related protein expressions in liver. Finally, 16S rRNA sequencing was used to detect alteration of gut microbiota diversity and abundance in rats after BHRS treatment. Our results showed that BHRS could alleviate the hyperglycemia, hyperlipidemia, IR, and pathological changes of liver, pancreas, and kidney in T2DM rats. BHRS could also decrease the levels of pro-inflammatory cytokines and inhibit the oxidative stress. Immunohistochemistry showed BHRS could increase the expression tight junction-related proteins (ZO-1 and occludin) in colon. Besides, the level of LPS in serum was decreased after BHRS treatment. Western blot results showed that the protein expression of TLR4, MyD88 and the phosphorylation IκB, and NF-κBp65 were lowered after BHRS treatment. 16S rRNA sequencing showed that BHRS treatment altered the diversity of gut microbiotra and decreases the Firmicutes/Bacteroidetes (F to B) ratio at the phylum level. At the genus level, BHRS could increase the relative abundances of Lactobacillus, Blautia, and Anaerostipes and decrease the relative abundances of Allobaculum, Candidatus Saccharimonas, and Ruminococcus. In conclusion, our study revealed the various ameliorative effects of BHRS on T2DM, including improving the liver and kidney functions and alleviating the hyperglycemia, hyperlipidemia, pathological changes, oxidative stress and inflammatory response. The mechanisms of BHRS on T2DM are likely linked to the repair of gut barrier and the inhibition of TLR4/NF-κB-mediated inflammatory response and the improvement in the dysbiosis of gut microbiota.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglicemia , Hiperlipidemias , Panax , Ratos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , NF-kappa B , RNA Ribossômico 16S/genética , Receptor 4 Toll-Like , Permeabilidade , Hiperlipidemias/tratamento farmacológico
13.
Artigo em Inglês | MEDLINE | ID: mdl-35845577

RESUMO

Jian-Gan-Xiao-Zhi decoction (JGXZ) has demonstrated beneficial effects on nonalcoholic fatty liver disease (NAFLD). However, the mechanisms by which JGXZ improve NAFLD are still unclear. Methods. In this study, we first used a high-fat diet (HFD) to establish a NAFLD rat model to clarify the therapeutic effect of JGXZ on NAFLD. Secondly, we used network pharmacology to predict the potential targets of JGXZ on NAFLD, and then the key targets obtained from network pharmacology were verified. Finally, we used untargeted metabolomics to study the metabolic regulatory mechanism of JGXZ. Results. JGXZ treatment could decrease body weight and ameliorate dyslipidemia in NAFLD model rats. H&E and oil red O staining indicated that JGXZ reduced steatosis and infiltration of inflammatory cells in the liver. In addition, network pharmacology research found that the potential targets of JGXZ on NAFLD pathway were mainly associated with improving oxidative stress, apoptosis, inflammation, lipid metabolism disorders, and insulin resistance. Further experimental verification confirmed that JGXZ could inhibit inflammation and improve oxidative stress, insulin resistance, and lipid metabolism disorders. Serum untargeted metabolomics analyses indicated that the JGXZ in the treatment of NAFLD may work through the linoleic acid metabolism, alpha-linolenic acid metabolism, tryptophan metabolism, and glycerophospholipid metabolism pathways. Conclusions. In conclusion, this study found that JGXZ has an ameliorative effect on NAFLD, and JGXZ alleviates the inflammatory response and oxidative stress and lipid metabolism disorders in NAFLD rats. The mechanism of action of JGXZ in the treatment of NAFLD may be related to the regulation of linoleic acid metabolism, tryptophan metabolism, alpha-linolenic acid metabolism, and glycerophospholipid metabolism.

14.
J Ethnopharmacol ; 284: 114799, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34748869

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Natural musk (Moschus), derived naturally from male musk deer (Moschus berezovskii Flerov, Moschus sifanicus Przewalski, or Moschus moschiferus Linnaeus), has long been an important component of traditional Chinese medicine (TCM), and was used as resuscitation, blood circulation, and collateral drainage. detumescence and pain relief. Artificial musk was researched and applied into TCM as natural musk being as unsustainable resources. AIM OF THE STUDY: We mainly summarized chemical compositions, pharmacological activities and mechanism of action of natural and artificial musk, and designed to serve as a foundation for further research into musk chemical compositions and pharmacological effect. MATERIALS AND METHODS: Those mainstream scientific databases including Google Scholar, ScienceDirect, SpringerLink, CNKI, Wiley Online Library, web of science, were used for searching with below "Keywords", as well as literature-tracking. Literatures spanned 1962 to 2021, and involved into Chinese, English, Janpanese, Korean. RESULTS: Natural musk contains some very desirable but scarce compounds, as well as their biological features, which led to the development of artificial musk. The chemical ingredients, pharmacological activities, and mechanisms of action of natural and artificial musk are summarized and compared in this paper. Polypeptide and protein, muscone, musclide, steroids, muscopyridine, and other chemical constituents of musk demonstrated important therapeutic properties against inflammation, immune system disorders, neurological disorders, cardiovascular system disorders, and so on. The mechanism of action contributed to effect on mediators, acceptors and relative signal pathways. CONCLUSIONS: Natural and artificial musk were revealed having some activated compounds, and showed excellent pharmacological effect. Meantime, above two sides of natural and artificial musk ought to get further research.


Assuntos
Ácidos Graxos Monoinsaturados/química , Animais , Cervos , Masculino
15.
Front Endocrinol (Lausanne) ; 13: 1106875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743916

RESUMO

Qingrequzhuo capsule (QRQZ), composed of Morus alba L., Coptis chinensis Franch., Anemarrhena asphodeloides Bunge, Alisma plantago-aquatica subsp. orientale (Sam.) Sam., Citrus × aurantium L., Carthamus tinctorius L., Rheum palmatum L., Smilax glabra Roxb., Dioscorea oppositifolia L., Cyathula officinalis K.C.Kuan, has been used to treat nonalcoholic steatohepatitis (NASH) in clinic. However, the mechanism of QRQZ on NASH remains unclear. Recent studies have found that the dysfunction of gut microbiota could impair the gut barrier and induce the activation of TLR4/NF-kB signaling pathway, and further contribute to the inflammatory response in NASH. Modulating the gut microbiota to reduce inflammation could prevent the progression of NASH. In this study, a mouse model of NASH was generated by methionine and choline deficient diet (MCD) and treated with QRQZ. First, we evaluated the therapeutic effects of QRQZ on liver injury and inflammation in the NASH mice. Second, the changes in the gut microbiota diversity and abundance in each group of mice were measured through 16S rRNA sequencing. Finally, the effects of QRQZ on gut mucosal permeability, endotoxemia, and liver TLR4/NF-kB signaling pathway levels were examined. Our results showed that QRQZ significantly reduced the lipid accumulation in liver and the liver injury in NASH mice. In addition, QRQZ treatment decreased the levels of inflammatory cytokines in liver. 16S rRNA sequencing showed that QRQZ affected the diversity of gut microbiota and a f f e c t e d t h e r e l a t i v e a b u n d a n c e s o f D u b o s i e l l a , Lachnospiraceae_NK4A136_group, and Blautiain NASH mice. Besides, QRQZ could increase the expression of tight junction proteins (zonula occludens-1 and occludin) in gut and decrease the lipopolysaccharide (LPS) level in serum. Western blot results also showed that QRQZ treatment decreased the protein expression ofTLR4, MyD88 and the phosphorylation of IkB and NF-kBp65 and qPCR results showed that QRQZ treatment down-regulated the gene expression of interleukin (IL)-1b, IL-6, and tumor necrosis factor (TNF)-a in liver. In conclusion, our study demonstrated that QRQZ could reduce the lipid accumulation and inflammatory response in NASH model mice. The mechanisms of QRQZ on NASH were associated with modulating gut microbiota, thereby inducing the tight junction of gut barrier, reducing the endotoxemia and inhibiting the activation of TLR4/NFkB signaling pathway in liver.


Assuntos
Medicamentos de Ervas Chinesas , Endotoxemia , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Colina , Dieta , Microbioma Gastrointestinal/genética , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos , Metionina/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Racemetionina , RNA Ribossômico 16S , Transdução de Sinais , Junções Íntimas/metabolismo , Receptor 4 Toll-Like/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico
16.
Front Pharmacol ; 12: 808867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058786

RESUMO

San-Huang-Yi-Shen capsule (SHYS) has been used in the treatment of diabetic nephropathy (DN) in clinic. However, the mechanisms of SHYS on DN remain unknown. In this study, we used a high-fat diet (HFD) combined with streptozotocin (STZ) injection to establish a DN rat model. Next, we used 16S rRNA sequencing and untargeted metabolomics to study the potential mechanisms of SHYS on DN. Our results showed that SHYS treatment alleviated the body weight loss, hyperglycemia, proteinuria, pathological changes in kidney in DN rats. SHYS could also inhibite the oxidative stress and inflammatory response in kidney. 16S rRNA sequencing analysis showed that SHYS affected the beta diversity of gut microbiota community in DN model rats. SHYX could also decrease the Firmicutes to Bacteroidetes (F to B) ratio in phylum level. In genus level, SHYX treatment affected the relative abundances of Lactobacillus, Ruminococcaceae UCG-005, Allobaculum, Anaerovibrio, Bacteroides and Candidatus_Saccharimonas. Untargeted metabolomics analysis showed that SHYX treatment altered the serum metabolic profile in DN model rats through affecting the levels of guanidineacetic acid, L-kynurenine, prostaglandin F1α, threonine, creatine, acetylcholine and other 21 kind of metabolites. These metabolites are mainly involved in glycerophospholipid metabolism, tryptophan metabolism, alanine, aspartate and glutamate metabolism, arginine biosynthesis, tricarboxylic acid (TCA) cycle, tyrosine metabolism, arginine and proline metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and D-glutamine and D-glutamate metabolism pathways. Spearman correlation analysis showed that Lactobacillus, Candidatus_Saccharimonas, Ruminococcaceae UCG-005, Anaerovibrio, Bacteroides, and Christensenellaceae_R-7_group were closely correlated with most of physiological data and the differential metabolites following SHYS treatment. In conclusion, our study revealed multiple ameliorative effects of SHYS on DN including the alleviation of hyperglycemia and the improvement of renal function, pathological changes in kidney, oxidative stress, and the inflammatory response. The mechanism of SHYS on DN may be related to the improvement of gut microbiota which regulates arginine biosynthesis, TCA cycle, tyrosine metabolism, and arginine and proline metabolism.

17.
Zhongguo Zhong Yao Za Zhi ; 41(6): 1059-1065, 2016 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-28875670

RESUMO

Puerarin is the main active component of flavonoids in Puerariae Lobatae Radix. In this study, agar gel microspheres bonded with ß-cyclodextrin (AG-ß-CD) were synthesized by using economical agar, and then high-purity puerarin was obtained with AB-8 through high-yield separation. With purity and yield of puerarin, and chromatographic purity of related impurities as indexes, four macroporous resins of different properties, namely ADS-7 (high polarity), ADS-17 (medium polarity), ADS-21 (polarity) and AB-8 (weak polarity), were selected for separation of puerarin and technological optimization. In addition, the AG-ß-CD purification process was optimized and verified. The results showed that, AB-8 resins showed the best effect and selected as the pre-treatment resins for crude puerarin, and puerarin with the purity of 87.68% showed a recovery rate of 89.66%. The optimized purification process parameters of AG-ß-CD included mobile phase (15% ethanol), loading capacity (the ratio of loading amount to column volume) (1.33 g•L⁻¹), sample concentration (8 g•L⁻¹) and flow rate (1 mL•min⁻¹), puerarin with the purity of 95% showed a recovery rate of more than 97%.


Assuntos
Cromatografia em Gel/métodos , Medicamentos de Ervas Chinesas/isolamento & purificação , Isoflavonas/isolamento & purificação , Pueraria/química , Ágar/química , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/análise , Isoflavonas/análise , Microesferas
18.
J Environ Biol ; 34(2 Spec No): 451-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24620617

RESUMO

Ligustrum sinense are commonly used for their anti-inflammatory, anti-rheumatic, diuretic, and hypotensive activities in traditional Chinese medicine. To observe the effects of the combined treatment of a water-soluble extract of Ligustrum sinense (WEL) and gentamicin sulphate (GS) on Pseudomonas aeruginosa PA01, the micro-dilution method was used to determine the minimal inhibitory concentration (MIC) of GS. Formation of a PA01 biofilm was observed under an optical microscope after treatment with different dosages of WEL and combined treatment with GS. The MIC of WEL was 8g l(-1), and permanent activity was also observed. The effect of WEL with GS was synergistic. The motility, biomass of biofilms, and production of pyocyanin of P. aeruginosa were strongly suppressed in the presence of WEL. The conclusion can be drawn that combined antibiotics can be used to treat the contamination due to the biofilm formation caused by P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Gentamicinas/farmacologia , Ligustrum/química , Pseudomonas aeruginosa/fisiologia , Antibacterianos/química , Farmacorresistência Bacteriana , Extratos Vegetais , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA