Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(40): 46971-46981, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37755826

RESUMO

The exploitation of high-performance supercapacitors is crucial to promote energy storage technologies. Benefiting from the three-dimensional conductive micronanostructures and high specific capacity of the PPy@CuCo2S4@NF (polypyrrole/copper cobalt sulfide/nickel foam) composite electrode, this electrode exhibits a high specific capacity of 1403.21 C g-1 at 1 A g-1 and a capacitance retention of 85.79% after 10,000 cycles at 10 A g-1. The assembled PPy@CuCo2S4@NF//AC aqueous hybrid supercapacitor (AHSC) reveals a wide operating potential window of 1.5 V and achieves a high specific capacity of 322.52 C g-1 at 1 A g-1 and a capacitance retention of 86.84% after 15,000 cycles at 10 A g-1. The AHSC also exhibits a high power density of 733.69 W kg-1 at an energy density of 67.19 W h kg-1, surpassing those of previously reported spinel-based supercapacitors. Ex situ X-ray diffraction and X-ray photoelectron spectroscopy results show that the CuCo2S4 spinel structure changes to CuS2 and CoS2 cube structures, and the oxidation states of Cu and Co increase during charging and discharging processes. Density functional theory calculations suggest a superior conductivity for CuCo2S4 compared to that for CuCo2O4, demonstrating that CuCo2S4 has superior electrochemical performance. These findings attest to the considerable potential of the spinel materials for advanced energy storage applications.

2.
ACS Appl Mater Interfaces ; 13(44): 52938-52949, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704433

RESUMO

High operating temperature and low response restrict the application of H2S sensors. Due to the strong chemical affinity of CuO to H2S and the large band gap and high stability of ß-In2S3, CuO nanotube/In2S3 nanosheet p/n heterostructures have been delicately designed for binder-free gas sensors by a facile method consisting of sputtering, chemical etching, and annealing. A switching effect of H2S concentration on the response of CuO/In2S3 gas sensors has been observed. When exposed to low-concentration H2S (1-10 ppm), the response is less than 0.10 and dominated by the surface-type adsorption-desorption process between CuO and H2S. When exposed to high-concentration H2S, the sensor exhibits a superior response of 3511 toward 50 ppm H2S, considerable selectivity, and long-term stability at room temperature. This dramatically enhanced response can be explained by the transformed junction from the CuO/In2S3 heterojunction to the CuS/In2S3 Schottky junction. These results suggest that the binder-free ceramic tube-type CuO/In2S3 gas sensor with considerable performance will have promising potential for H2S gas detection. Moreover, this method provides an effective strategy to fabricate other binder-free gas sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA