Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(4): 288, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35312876

RESUMO

The purpose of this study was to examine the spatial and temporal variations of phytoplankton species composition and biomass in Lake Bunyonyi, South-Western Uganda. Samples were collected monthly from nine fixed stations in the lake from October 2019 to September 2020. Based on the morphological characterization, 52 different species of phytoplankton were recorded. These were dominated by cyanobacteria (21 species) and chlorophytes (15 species) followed by diatoms (10 species), euglenophytes (4 species), dinoflagellates (2 species), and cryptophytes (1 species). The biomass (Chl-a concentration) ranged from 0.019 ± 0.009 mg/L at Heissesero station to 0.045 ± 0.013 mg/L obtained at Nyombe station. On a temporal basis, the highest mean Chl-a concentration of 0.044 ± 0.03 mg/L was recorded in March 2020 while the least concentration of 0.015 ± 0.011 mg/L was obtained in September 2020. Significant differences existed in the Chl-a concentration values between stations and across sampling months. Chl-a concentration was significantly positively correlated with dissolved oxygen (DO), turbidity but negatively correlated with temperature. The Shannon-Wiener index and evenness put it clear that the distribution of phytoplankton species in the lake is inequitable. Besides, 94.2% of the phytoplankton species revealed had never been reported by the previous studies in the study area. The dominance of species cyanobacteria (such as Microcystis spp., Cylindrospermopsis raciborskii, Anabaenopsis sp., and Anabaena sp.) presents potential future challenges to water quality management. Therefore, the establishment of a strong and committed committee dubbed "Lake Bunyonyi Water Management Committee" to oversee the activities and avert potential water quality challenges is strongly recommended. The existence of some toxic phytoplankton species calls for regular monitoring and careful use of the lake and its food products.


Assuntos
Lagos , Fitoplâncton , Biomassa , Monitoramento Ambiental , Uganda
2.
SN Appl Sci ; 3(7): 697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34131630

RESUMO

Background Microbial water quality serves to indicate health risks associated with the consumption of contaminated water. Nevertheless, little is known about the microbiological characteristics of water in Lake Bunyonyi. This study was therefore undertaken to examine the spatial and temporal variations of faecal indicator bacteria (FIB) in relation to physicochemical parameters in Lake Bunyonyi. Result The FIB concentration was consistently measured during sampling months and correlated with each other showing the presumed human faecal pollution in the lake. The highest concentration values for E. coli (64.7 ± 47.3 CFU/100 mL) and enterococci (24.6 ± 32.4 CFU/100 mL were obtained in the station close to the Mugyera trading centre. On a temporal basis, the maximum values were recorded during the rainy season in October 2019 (70.7 ± 56.5 CFU/100 mL for E. coli and 38.44 ± 31.8 CFU/100 mL for enterococci. FIB did not differ significantly among the study stations (p > 0.05) but showed significant temporal variations among the months (p < 0.05) with concentrations being significantly high in wet season than dry season (U = 794, p < 0.0001 for E. coli; U = 993.5, p = 0.008 for enterococci). Spearman's rank correlation revealed that FIB concentrations were significantly positively correlated with turbidity and DO concentration levels (p < 0.05). Approximately 97.2% of the water samples had E. coli and enterococci concentrations levels below USEPA threshold for recreational waters. Likewise, 98.1 and 90.7% of samples recorded E. coli and enterococci counts exceeding the UNBS, APHA, WHO and EU threshold values for drinking water. Conclusion The FIB counts show that the Lake Bunyonyi water is bacteriologically unsuitable for drinking unless it is treated since the FIB pose health risks to consumers. Besides, the water can be used for recreational purposes.

3.
Ecol Evol ; 10(4): 1917-1928, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128125

RESUMO

Climate change-induced ocean warming is expected to greatly affect carbon dynamics and sequestration in vegetated shallow waters, especially in the upper subtidal where water temperatures may fluctuate considerably and can reach high levels at low tides. This might alter the greenhouse gas balance and significantly reduce the carbon sink potential of tropical seagrass meadows. In order to assess such consequences, we simulated temperature stress during low tide exposures by subjecting seagrass plants (Thalassia hemprichii) and associated sediments to elevated midday temperature spikes (31, 35, 37, 40, and 45°C) for seven consecutive days in an outdoor mesocosm setup. During the experiment, methane release from the sediment surface was estimated using gas chromatography. Sulfide concentration in the sediment pore water was determined spectrophotometrically, and the plant's photosynthetic capacity as electron transport rate (ETR), and maximum quantum yield (Fv/Fm) was assessed using pulse amplitude modulated (PAM) fluorometry. The highest temperature treatments (40 and 45°C) had a clear positive effect on methane emission and the level of sulfide in the sediment and, at the same time, clear negative effects on the photosynthetic performance of seagrass plants. The effects observed by temperature stress were immediate (within hours) and seen in all response variables, including ETR, Fv/Fm, methane emission, and sulfide levels. In addition, both the methane emission and the size of the sulfide pool were already negatively correlated with changes in the photosynthetic rate (ETR) during the first day, and with time, the correlations became stronger. These findings show that increased temperature will reduce primary productivity and increase methane and sulfide levels. Future increases in the frequency and severity of extreme temperature events could hence reduce the climate mitigation capacity of tropical seagrass meadows by reducing CO2 sequestration, increase damage from sulfide toxicity, and induce the release of larger amounts of methane.

4.
Mar Pollut Bull ; 134: 89-93, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28935361

RESUMO

Though seagrass meadows are among the most productive habitats in the world, contributing substantially to long-term carbon storage, studies of the effects of critical disturbances on the fate of carbon sequestered in the sediment and biomass of these meadows are scarce. In a manipulative in situ experiment, we studied the effects of successive loss of seagrass biomass as a result of shading and simulated grazing at two intensity levels on sulphide (H2S) content and methane (CH4) emission in a tropical seagrass meadow in Zanzibar (Tanzania). In all disturbed treatments, we found a several-fold increase in both the sulphide concentration of the sediment pore-water and the methane emissions from the sediment surface (except for CH4 emissions in the low-shading treatment). This could be due to the ongoing degradation of belowground biomass shed by the seagrass plants, supporting the production of both sulphate-reducing bacteria and methanogens, possibly exacerbated by the loss of downwards oxygen transport via seagrass plants. The worldwide rapid loss of seagrass areas due to anthropogenic activities may therefore have significant effects on carbon sink-source relationships within coastal seas.


Assuntos
Hydrocharitaceae/fisiologia , Metano/metabolismo , Sulfetos/metabolismo , Baías , Biomassa , Carbono/metabolismo , Sequestro de Carbono , Ecossistema , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Metano/análise , Sulfetos/análise , Tanzânia , Clima Tropical
5.
FEMS Microbiol Lett ; 362(5)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25743072

RESUMO

The current study assessed the occurrence of the Vibrio cholerae serogroups O1 and O139 in environmental samples along salinity gradients in three selected estuaries of Tanzania both through culture independent methods and by cultured bacteria. Occurrence of V. cholerae was determined by PCR targeting the V. cholerae outer membrane protein gene ompW. Furthermore, the presence of toxigenic strains and serogroups O1 and O139 was determined using multiplex PCR with specific primers targeting the cholera toxin gene subunit A, ctxA, and serotype specific primers, O1-rfb and O139-rfb, respectively. Results showed that V. cholerae occurred in approximately 10% (n = 185) of both the environmental samples and isolated bacteria. Eight of the bacteria isolates (n = 43) were confirmed as serogroup O1 while one belonged to serogroup O139, the first reported identification of this epidemic strain in East African coastal waters. All samples identified as serogroup O1 or O139 and a number of non-O1/O139 strains were ctxA positive. This study provides in situ evidence of the presence of pathogenic V. cholerae O1 and O139 and a number of V. cholerae non-O1/O139 that carry the cholera toxin gene in estuaries along the coast of Tanzania.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Estuários , Vibrio cholerae O139/genética , Vibrio cholerae O139/isolamento & purificação , Vibrio cholerae O1/genética , Vibrio cholerae O1/isolamento & purificação , Microbiologia da Água , Toxina da Cólera/genética , Primers do DNA , Genes Bacterianos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Tanzânia , Vibrio cholerae O1/patogenicidade , Vibrio cholerae O139/patogenicidade , Virulência/genética
6.
FEMS Microbiol Ecol ; 70(3): 483-92, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19744237

RESUMO

The oxidation of dimethylsulfide and methanethiol by sulfate-reducing bacteria (SRB) was investigated in Tanzanian mangrove sediments. The rate of dimethylsulfide and methanethiol accumulation in nonamended sediment slurry (control) incubations was very low while in the presence of the inhibitors tungstate and bromoethanesulfonic acid (BES), the accumulation rates ranged from 0.02-0.34 to 0.2-0.4 nmol g FW sediment(-1) h(-1), respectively. Degradation rates of methanethiol and dimethylsulfide added were 2-10-fold higher. These results point to a balance of production and degradation. Degradation was inhibited much stronger by tungstate than by BES, which implied that SRB were more important. In addition, a new species of SRB, designated strain SD1, was isolated. The isolate was a short rod able to utilize a narrow range of substrates including dimethylsulfide, methanethiol, pyruvate and butyrate. Strain SD1 oxidized dimethylsulfide and methanethiol to carbon dioxide and hydrogen sulfide with sulfate as the electron acceptor and exhibited a low specific growth rate of 0.010 +/- 0.002 h(-1), but a high affinity for its substrates. The isolated microorganism could be placed in the genus Desulfosarcina (the most closely related cultured species was Desulfosarcina variabilis, 97% identity). Strain SD1 represents a member of the dimethylsulfide/methanethiol-consuming SRB population in mangrove sediments.


Assuntos
Sedimentos Geológicos/microbiologia , Compostos de Sulfidrila/metabolismo , Sulfetos/metabolismo , Bactérias Redutoras de Enxofre/metabolismo , Microbiologia da Água , Anaerobiose , Avicennia/microbiologia , DNA Bacteriano/genética , Oxirredução , Filogenia , Bactérias Redutoras de Enxofre/genética , Tanzânia
7.
FEMS Microbiol Lett ; 291(2): 247-53, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19146579

RESUMO

Mangrove forest sediments produce significant amounts of methane, but the diversity of methanogenic archaea is not well known at present. Therefore, 16S rRNA gene libraries were made using archaea-specific primers and DNA extracted directly from Tanzanian mangrove sediment samples as a template. Analysis of sequence data showed phylotypes closely related to cultivated methylotrophic methanogenic archaea from the marine environment, or distantly related to acetoclastic and hydrogenotrophic methanogenic archaea. In an attempt to isolate relevant methanogenic archaea, we succeeded in obtaining a new mesophilic methylotrophic methanogenic archaeon (strain MM1) capable of utilizing methanol and methylated amines as the only substrates. Under optimum conditions, the cells of strain MM1 exhibited a high specific growth rate (mu) of 0.21+/-0.03 (i.e. doubling time of 3.2 h) on both methanol and trimethylamine. The 16S rRNA gene sequence of strain MM1 clustered with five environmental clones, indicating that MM1 is an important methanogenic methylotroph in mangrove sediments. Based on physiological and phylogenetic analyses, strain MM1 is proposed to be included in the species of Methanococcoides methylutens.


Assuntos
Archaea/classificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Metanol/metabolismo , Methanosarcinaceae/isolamento & purificação , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , DNA Arqueal/genética , DNA Ribossômico/genética , Methanosarcinaceae/classificação , Methanosarcinaceae/genética , Methanosarcinaceae/metabolismo , Metilaminas/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA