Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hormones (Athens) ; 22(3): 515-520, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37493943

RESUMO

PURPOSE: IGSF1 deficiency syndrome (immunoglobulin superfamily member 1) is considered the most common sex-linked cause of secondary congenital hypothyroidism and is characterized by a wide variety of other clinical and biochemical features, including hypoprolactinemia, transient and partial growth hormone deficiency, early/normal timing of testicular enlargement but delayed testosterone rise in puberty, and adult macro-orchidism. Congenital central hypothyroidism is a rare disease (1:65,000 births); the detection of which may be delayed and missed by neonatal screening programs since most neonatal screening programs are based on TSH determination in dried blood spots only. Untreated hypothyroidism may cause abnormal liver biochemistry and non-alcoholic fatty liver disease. Our aim is to report a case of secondary hypothyroidism in an infant with an uncommon initial presentation. CASE PRESENTATION (METHODS/RESULTS): A 3-month-old male baby was referred to our hospital due to elevated alpha-fetoprotein levels, hypercholesterolemia, and macrosomia. Initial investigations revealed enlarged fatty liver and central hypothyroidism. Pituitary insufficiency was biochemically excluded and a pituitary MRI showed normal findings. Upon genetic analysis, a hemizygous variant NM_001170961.1:c.2422dup, p.(His808Profs*14), in IGSF1 gene was detected, establishing the diagnosis of the IGSF1 deficiency syndrome. In our patient, no other clinical findings were identified. Treatment with levothyroxine led to the remission of liver disease. CONCLUSION: Liver disease may be the initial presentation of secondary hypothyroidism in neonates and infants. Macrosomia in patients with isolated secondary central hypothyroidism is a strong indicator of IGSF1 syndrome.


Assuntos
Hipotireoidismo Congênito , Doenças do Recém-Nascido , Hepatopatia Gordurosa não Alcoólica , Lactente , Adulto , Recém-Nascido , Feminino , Humanos , Masculino , Hepatomegalia/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Macrossomia Fetal/tratamento farmacológico , Hipotireoidismo Congênito/complicações , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/tratamento farmacológico , Tiroxina/uso terapêutico , Síndrome , Tireotropina , Imunoglobulinas/genética , Proteínas de Membrana/genética
2.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239810

RESUMO

McCune-Albright syndrome (MAS) is a rare sporadic condition defined by the classic triad of fibrous dysplasia of bone, café au lait skin macules, and hyperfunctioning endocrinopathies. The molecular basis of MAS has been ascribed to the post-zygotic somatic gain-of-function mutations in the GNAS gene, which encodes the alpha subunit of G proteins, leading to constitutive activation of several G Protein-Coupled Receptors (GPCRs). The co-occurrence of two of the above-mentioned cardinal clinical manifestations sets the diagnosis at the clinical level. In this case report, we describe a 27-month-old girl who presented with gonadotropin-independent precocious puberty secondary to an estrogen-secreting ovarian cyst, a café au lait skin macule and growth hormone, and prolactin excess, and we provide an updated review of the scientific literature on the clinical features, diagnostic work-up, and therapeutic management of MAS.


Assuntos
Doenças do Sistema Endócrino , Displasia Fibrosa Poliostótica , Hormônio do Crescimento Humano , Puberdade Precoce , Feminino , Humanos , Pré-Escolar , Displasia Fibrosa Poliostótica/diagnóstico , Displasia Fibrosa Poliostótica/genética , Displasia Fibrosa Poliostótica/complicações , Puberdade Precoce/diagnóstico , Puberdade Precoce/genética , Doenças do Sistema Endócrino/complicações , Manchas Café com Leite/diagnóstico , Manchas Café com Leite/genética
3.
BMC Med Genet ; 16: 30, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25943194

RESUMO

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) is a rare pediatric overgrowth disorder with a variable clinical phenotype caused by deregulation affecting imprinted genes in the chromosomal region 11p15. Alterations of the imprinting control region 1 (ICR1) at the IGF2/H19 locus resulting in biallelic expression of IGF2 and biallelic silencing of H19 account for approximately 10% of patients with BWS. The majority of these patients have epimutations of the ICR1 without detectable DNA sequence changes. Only a few patients were found to have deletions. Most of these deletions are small affecting different parts of the ICR1 differentially methylated region (ICR1-DMR) removing target sequences for CTCF. Only a very few deletions reported so far include the H19 gene in addition to the CTCF binding sites. None of these deletions include IGF2. CASE PRESENTATION: A male patient was born with hypotonia, facial dysmorphisms and hypoglycemia suggestive of Beckwith-Wiedemann syndrome. Using methylation-specific (MS)-MLPA (Multiplex ligation-dependent probe amplification) we have identified a maternally inherited large deletion of the ICR1 region in a patient and his mother. The deletion results in a variable clinical expression with a classical BWS in the mother and a more severe presentation of BWS in her son. By genome-wide SNP array analysis the deletion was found to span ~100 kb genomic DNA including the ICR1DMR, H19, two adjacent non-imprinted genes and two of three predicted enhancer elements downstream to H19. Methylation analysis by deep bisulfite next generation sequencing revealed hypermethylation of the maternal allele at the IGF2 locus in both, mother and child, although IGF2 is not affected by the deletion. CONCLUSIONS: We here report on a novel large familial deletion of the ICR1 region in a BWS family. Due to the deletion of the ICR1-DMR CTCF binding cannot take place and the residual enhancer elements have access to the IGF2 promoters. The aberrant methylation (hypermethylation) of the maternal IGF2 allele in both affected family members may reflect the active state of the normally silenced maternal IGF2 copy and can be a consequence of the deletion. The deletion results in a variable clinical phenotype and expression.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Elementos Facilitadores Genéticos/genética , Loci Gênicos/genética , Deleção de Sequência , Adulto , Análise Citogenética , Metilação de DNA , Feminino , Humanos , Recém-Nascido , Fator de Crescimento Insulin-Like II/genética , Masculino , Fenótipo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA