Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(3): 112161, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36842087

RESUMO

Timely completion of genome replication is a prerequisite for mitosis, genome integrity, and cell survival. A challenge to this timely completion comes from the need to replicate the hundreds of untranscribed copies of rDNA that organisms maintain in addition to the copies required for ribosome biogenesis. Replication of these rDNA arrays is relegated to late S phase despite their large size, repetitive nature, and essentiality. Here, we show that, in Saccharomyces cerevisiae, reducing the number of rDNA repeats leads to early rDNA replication, which results in delaying replication elsewhere in the genome. Moreover, cells with early-replicating rDNA arrays and delayed genome-wide replication aberrantly release the mitotic phosphatase Cdc14 from the nucleolus and enter anaphase prematurely. We propose that rDNA copy number determines the replication time of the rDNA locus and that the release of Cdc14 upon completion of rDNA replication is a signal for cell cycle progression.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anáfase , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Ribossomos/metabolismo , Replicação do DNA/genética , Replicação Viral
2.
Curr Biol ; 31(23): 5227-5237.e7, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34666003

RESUMO

Virus infection necessarily requires redirecting cellular resources toward viral progeny production. Adenovirus encodes the histone-like protein VII, which causes catastrophic global reorganization of host chromatin to promote virus infection. Protein VII recruits the family of high mobility group box (HMGB) proteins to chromatin along with the histone chaperone SET. As a consequence of this recruitment, we find that protein VII causes chromatin depletion of several linker histone H1 isoforms. The relationship between linker histone H1 and the functionally opposite HMGB proteins is critical for higher-order chromatin structure. However, the physiological consequences of perturbing this relationship are largely unknown. Here, we employ complementary systems in Saccharomyces cerevisiae and human cells to demonstrate that adenovirus protein VII disrupts the H1-HMGB balance to obstruct the cell cycle. We find that protein VII causes an accumulation of G2/M cells both in yeast and human systems, underscoring the high conservation of this chromatin vulnerability. In contrast, adenovirus E1A and E1B proteins are well established to override cell cycle regulation and promote transformation of human cells. Strikingly, we find that protein VII obstructs the cell cycle, even in the presence of E1A and E1B. We further show that, in a protein-VII-deleted infection, several cell cycle markers are regulated differently compared to wild-type infection, supporting our model that protein VII plays an integral role in hijacking cell cycle regulation during infection. Together, our results demonstrate that protein VII targets H1-HMGB1 antagonism to obstruct cell cycle progression, revealing an unexpected chromatin vulnerability exploited for viral benefit.


Assuntos
Proteínas HMGB , Histonas , Ciclo Celular , Cromatina , Proteínas HMGB/química , Proteínas HMGB/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Virais/metabolismo
3.
FEBS Lett ; 593(24): 3551-3570, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31769503

RESUMO

The DNA genome of eukaryotic cells is compacted by histone proteins within the nucleus to form chromatin. Nuclear-replicating viruses such as adenovirus have evolved mechanisms of chromatin manipulation to promote infection and subvert host defenses. Epigenetic factors may also regulate persistent adenovirus infection and reactivation in lymphoid tissues. In this review, we discuss the viral proteins E1A and protein VII that interact with and alter host chromatin, as well as E4orf3, which separates host chromatin from sites of viral replication. We also highlight recent advances in chromatin technologies that offer new insights into virus-directed chromatin manipulation. Beyond the role of chromatin in the viral replication cycle, we discuss the nature of persistent viral genomes in lymphoid tissue and cell lines, and the potential contribution of epigenetic signals in maintaining adenovirus in a quiescent state. By understanding the mechanisms through which adenovirus manipulates host chromatin, we will understand new aspects of this ubiquitous virus and shed light on previously unknown aspects of chromatin biology.


Assuntos
Infecções por Adenovirus Humanos/metabolismo , Adenovírus Humanos/patogenicidade , Cromatina/virologia , Epigênese Genética , Proteínas E1A de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/metabolismo , Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Cromatina/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Replicação Viral
4.
PLoS Genet ; 15(10): e1008430, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31584938

RESUMO

Chromosome replication in Saccharomyces cerevisiae is initiated from ~300 origins that are regulated by DNA sequence and by the limited abundance of six trans-acting initiation proteins (Sld2, Sld3, Dpb11, Dbf4, Sld7 and Cdc45). We set out to determine how the levels of individual factors contribute to time of origin activation and/or origin efficiency using induced depletion of single factors and overexpression of sets of multiple factors. Depletion of Sld2 or Sld3 slows growth and S phase progression, decreases origin efficiency across the genome and impairs viability as a result of incomplete replication of the rDNA. We find that the most efficient early origins are relatively unaffected by depletion of either Sld2 or Sld3. However, Sld3 levels, and to a lesser extent Sld2 levels, are critical for firing of the less efficient early origins. Overexpression of Sld3 simultaneously with Sld2, Dpb11 and Dbf4 preserves the relative efficiency of origins. Only when Cdc45 and Sld7 are also overexpressed is origin efficiency equalized between early- and late-firing origins. Our data support a model in which Sld3 together with Cdc45 (and/or Sld7) is responsible for the differential efficiencies of origins across the yeast genome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transativadores/metabolismo , Proteínas de Ciclo Celular/genética , Duplicação Cromossômica , Cromossomos Fúngicos , Origem de Replicação , Fase S , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética
5.
Eukaryot Cell ; 13(8): 990-1000, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24879124

RESUMO

In response to genotoxic stress, ATR and ATM kinases phosphorylate H2A in fungi and H2AX in animals on a C-terminal serine. The resulting modified histone, called γH2A, recruits chromatin-binding proteins that stabilize stalled replication forks or promote DNA double-strand-break repair. To identify genomic loci that might be prone to replication fork stalling or DNA breakage in Neurospora crassa, we performed chromatin immunoprecipitation (ChIP) of γH2A followed by next-generation sequencing (ChIP-seq). γH2A-containing nucleosomes are enriched in Neurospora heterochromatin domains. These domains are comprised of A·T-rich repetitive DNA sequences associated with histone H3 methylated at lysine-9 (H3K9me), the H3K9me-binding protein heterochromatin protein 1 (HP1), and DNA cytosine methylation. H3K9 methylation, catalyzed by DIM-5, is required for normal γH2A localization. In contrast, γH2A is not required for H3K9 methylation or DNA methylation. Normal γH2A localization also depends on HP1 and a histone deacetylase, HDA-1, but is independent of the DNA methyltransferase DIM-2. γH2A is globally induced in dim-5 mutants under normal growth conditions, suggesting that the DNA damage response is activated in these mutants in the absence of exogenous DNA damage. Together, these data suggest that heterochromatin formation is essential for normal DNA replication or repair.


Assuntos
Cromossomos Fúngicos/fisiologia , Proteínas Fúngicas/metabolismo , Heterocromatina/fisiologia , Histonas/metabolismo , Neurospora crassa/metabolismo , DNA Fúngico/metabolismo , Metilação , Neurospora crassa/genética , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA