Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 9(1): 542, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068234

RESUMO

Assessments of the status of tidal flats, one of the most extensive coastal ecosystems, have been hampered by a lack of data on their global distribution and change. Here we present globally consistent, spatially-explicit data of the occurrence of tidal flats, defined as sand, rock or mud flats that undergo regular tidal inundation. More than 1.3 million Landsat images were processed to 54 composite metrics for twelve 3-year periods, spanning four decades (1984-1986 to 2017-2019). The composite metrics were used as predictor variables in a machine-learning classification trained with more than 10,000 globally distributed training samples. We assessed accuracy of the classification with 1,348 stratified random samples across the mapped area, which indicated overall map accuracies of 82.2% (80.0-84.3%, 95% confidence interval) and 86.1% (84.2-86.8%, 95% CI) for version 1.1 and 1.2 of the data, respectively. We expect these maps will provide a means to measure and monitor a range of processes that are affecting coastal ecosystems, including the impacts of human population growth and sea level rise.

2.
Remote Sens Ecol Conserv ; 8(1): 57-71, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35873085

RESUMO

Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R 2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1-10 ha-1. Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation models and satellite-derived biomass products that are essential to understand vulnerable and understudied non-forested ecosystems around the globe.

3.
Science ; 376(6594): 744-749, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549414

RESUMO

Tidal wetlands are expected to respond dynamically to global environmental change, but the extent to which wetland losses have been offset by gains remains poorly understood. We developed a global analysis of satellite data to simultaneously monitor change in three highly interconnected intertidal ecosystem types-tidal flats, tidal marshes, and mangroves-from 1999 to 2019. Globally, 13,700 square kilometers of tidal wetlands have been lost, but these have been substantially offset by gains of 9700 km2, leading to a net change of -4000 km2 over two decades. We found that 27% of these losses and gains were associated with direct human activities such as conversion to agriculture and restoration of lost wetlands. All other changes were attributed to indirect drivers, including the effects of coastal processes and climate change.


Assuntos
Áreas Alagadas , Agricultura , Mudança Climática , Mapeamento Geográfico , Humanos
4.
Ann Bot ; 129(7): 787-794, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35212713

RESUMO

BACKGROUND AND AIMS: Seed germination is strongly influenced by environmental temperatures. With global temperatures predicted to rise, the timing of germination for thousands of plant species could change, leading to potential decreases in fitness and ecosystem-wide impacts. The thermogradient plate (TGP) is a powerful but underutilized research tool that tests germination under a broad range of constant and alternating temperatures, giving researchers the ability to predict germination characteristics using current and future climates. Previously, limitations surrounding experimental design and data analysis methods have discouraged its use in seed biology research. METHODS: Here, we have developed a freely available R script that uses TGP data to analyse seed germination responses to temperature. We illustrate this analysis framework using three example species: Wollemia nobilis, Callitris baileyi and Alectryon subdentatus. The script generates >40 germination indices including germination rates and final germination across each cell of the TGP. These indices are then used to populate generalized additive models and predict germination under current and future monthly maximum and minimum temperatures anywhere on the globe. KEY RESULTS: In our study species, modelled data were highly correlated with observed data, allowing confident predictions of monthly germination patterns for current and future climates. Wollemia nobilis germinated across a broad range of temperatures and was relatively unaffected by predicted future temperatures. In contrast, C. baileyi and A. subdentatus showed strong seasonal temperature responses, and the timing for peak germination was predicted to shift seasonally under future temperatures. CONCLUSIONS: Our experimental workflow is a leap forward in the analysis of TGP experiments, increasing its many potential benefits, thereby improving research predictions and providing substantial information to inform management and conservation of plant species globally.


Assuntos
Mudança Climática , Germinação , Ecossistema , Germinação/fisiologia , Dormência de Plantas , Sementes/fisiologia , Temperatura
6.
Sci Data ; 8(1): 196, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341357

RESUMO

Coral reef management and conservation stand to benefit from improved high-resolution global mapping. Yet classifications underpinning large-scale reef mapping to date are typically poorly defined, not shared or region-specific, limiting end-users' ability to interpret outputs. Here we present Reef Cover, a coral reef geomorphic zone classification, developed to support both producers and end-users of global-scale coral reef habitat maps, in a transparent and version-based framework. Scalable classes were created by focusing on attributes that can be observed remotely, but whose membership rules also reflect deep knowledge of reef form and functioning. Bridging the divide between earth observation data and geo-ecological knowledge of reefs, Reef Cover maximises the trade-off between applicability at global scales, and relevance and accuracy at local scales. Two case studies demonstrate application of the Reef Cover classification scheme and its scientific and conservation benefits: 1) detailed mapping of the Cairns Management Region of the Great Barrier Reef to support management and 2) mapping of the Caroline and Mariana Island chains in the Pacific for conservation purposes.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Tecnologia de Sensoriamento Remoto , Austrália
7.
Trends Ecol Evol ; 36(6): 485-487, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33863603

RESUMO

Evolving capabilities in environmental data collection, sharing, and processing, are enabling unprecedented use of data from a wide range of sources. Yet data freshness, an important quality dimension associated with the age of data, is a poorly reported aspect of data quality that can lead to additional uncertainty in research findings.


Assuntos
Ecologia , Incerteza
8.
Nature ; 565(7738): 222-225, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30568300

RESUMO

Increasing human populations around the global coastline have caused extensive loss, degradation and fragmentation of coastal ecosystems, threatening the delivery of important ecosystem services1. As a result, alarming losses of mangrove, coral reef, seagrass, kelp forest and coastal marsh ecosystems have occurred1-6. However, owing to the difficulty of mapping intertidal areas globally, the distribution and status of tidal flats-one of the most extensive coastal ecosystems-remain unknown7. Here we present an analysis of over 700,000 satellite images that maps the global extent of and change in tidal flats over the course of 33 years (1984-2016). We find that tidal flats, defined as sand, rock or mud flats that undergo regular tidal inundation7, occupy at least 127,921 km2 (124,286-131,821 km2, 95% confidence interval). About 70% of the global extent of tidal flats is found in three continents (Asia (44% of total), North America (15.5% of total) and South America (11% of total)), with 49.2% being concentrated in just eight countries (Indonesia, China, Australia, the United States, Canada, India, Brazil and Myanmar). For regions with sufficient data to develop a consistent multi-decadal time series-which included East Asia, the Middle East and North America-we estimate that 16.02% (15.62-16.47%, 95% confidence interval) of tidal flats were lost between 1984 and 2016. Extensive degradation from coastal development1, reduced sediment delivery from major rivers8,9, sinking of riverine deltas8,10, increased coastal erosion and sea-level rise11 signal a continuing negative trajectory for tidal flat ecosystems around the world. Our high-spatial-resolution dataset delivers global maps of tidal flats, which substantially advances our understanding of the distribution, trajectory and status of these poorly known coastal ecosystems.


Assuntos
Ecossistema , Mapeamento Geográfico , Sedimentos Geológicos/análise , Ondas de Maré , Ásia , América do Norte , Reprodutibilidade dos Testes , Imagens de Satélites , América do Sul
9.
J R Soc Interface ; 15(144)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29973403

RESUMO

Vegetation cover is fundamental in the formation and maintenance of geomorphological features in dune systems. In arid Australia, increased woody shrub cover has been linked to removal of the apex predator (Dingoes, Canis dingo) via subsequent trophic cascades. We ask whether this increase in shrubs can be linked to altered physical characteristics of the dunes. We used drone-based remote sensing to measure shrub density and construct three-dimensional models of dune morphology. Dunes had significantly different physical characteristics either side of the 'dingo-proof fence', inside which dingoes are systematically eradicated and shrub density is higher over vast spatial extents. Generalized additive models revealed that dunes with increased shrub density were higher, differently shaped and more variable in height profile. We propose that low shrub density induces aeolian and sedimentary processes that result in greater surface erosion and sediment transport, whereas high shrub density promotes dune stability. We speculate that increased vegetation cover acts to push dunes towards an alternate stable state, where climatic variation no longer has a significant effect on their morphodynamic state within the bi-stable state model. Our study provides evidence that anthropogenically induced trophic cascades can indirectly lead to large-scale changes in landscape geomorphology.


Assuntos
Canidae/fisiologia , Clima Desértico , Cadeia Alimentar , Modelos Biológicos , Animais , Austrália
10.
Sci Total Environ ; 619-620: 249-257, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149749

RESUMO

The current set of global conservation targets requires methods for monitoring the changing status of ecosystems. Protocols for ecosystem risk assessment are uniquely suited to this task, providing objective syntheses of a wide range of data to estimate the likelihood of ecosystem collapse. Satellite remote sensing can deliver ecologically relevant, long-term datasets suitable for analysing changes in ecosystem area, structure and function at temporal and spatial scales relevant to risk assessment protocols. However, there is considerable uncertainty about how to select and effectively utilise remotely sensed variables for risk assessment. Here, we review the use of satellite remote sensing for assessing spatial and functional changes of ecosystems, with the aim of providing guidance on the use of these data in ecosystem risk assessment. We suggest that decisions on the use of satellite remote sensing should be made a priori and deductively with the assistance of conceptual ecosystem models that identify the primary indicators representing the dynamics of a focal ecosystem.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Tecnologia de Sensoriamento Remoto , Medição de Risco
11.
Glob Chang Biol ; 19(8): 2569-83, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23564697

RESUMO

The distribution and abundance of seagrass ecosystems could change significantly over the coming century due to sea level rise (SLR). Coastal managers require mechanistic understanding of the processes affecting seagrass response to SLR to maximize their conservation and associated provision of ecosystem services. In Moreton Bay, Queensland, Australia, vast seagrass meadows supporting populations of sea turtles and dugongs are juxtaposed with the multiple stressors associated with a large and rapidly expanding human population. Here, the interactive effects of predicted SLR, changes in water clarity, and land use on future distributions of seagrass in Moreton Bay were quantified. A habitat distribution model of present day seagrass in relation to benthic irradiance and wave height was developed which correctly classified habitats in 83% of cases. Spatial predictions of seagrass and presence derived from the model and bathymetric data were used to initiate a SLR inundation model. Bathymetry was iteratively modified based on SLR and sedimentary accretion in seagrass to simulate potential seagrass habitat at 10 year time steps until 2100. The area of seagrass habitat was predicted to decline by 17% by 2100 under a scenario of SLR of 1.1 m. A scenario including the removal of impervious surfaces, such as roads and houses, from newly inundated regions, demonstrated that managed retreat of the shoreline could potentially reduce the overall decline in seagrass habitat to just 5%. The predicted reduction in area of seagrass habitat could be offset by an improvement in water clarity of 30%. Greater improvements in water clarity would be necessary for larger magnitudes of SLR. Management to improve water quality will provide present and future benefits to seagrasses under climate change and should be a priority for managers seeking to compensate for the effects of global change on these valuable habitats.


Assuntos
Alismatales/fisiologia , Mudança Climática , Ecossistema , Modelos Biológicos , Dispersão Vegetal , Qualidade da Água , Sedimentos Geológicos , Queensland
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA