Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Nat Commun ; 15(1): 1124, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321058

RESUMO

The recovery of mitochondrial quality control (MQC) may bring innovative solutions for neuroprotection, while imposing a significant challenge given the need of holistic approaches to restore mitochondrial dynamics (fusion/fission) and turnover (mitophagy and biogenesis). In diabetic retinopathy, this is compounded by our lack of understanding of human retinal neurodegeneration, but also how MQC processes interact during disease progression. Here, we show that mitochondria hyperfusion is characteristic of retinal neurodegeneration in human and murine diabetes, blunting the homeostatic turnover of mitochondria and causing metabolic and neuro-inflammatory stress. By mimicking this mitochondrial remodelling in vitro, we ascertain that N6-furfuryladenosine enhances mitochondrial turnover and bioenergetics by relaxing hyperfusion in a controlled fashion. Oral administration of N6-furfuryladenosine enhances mitochondrial turnover in the diabetic mouse retina (Ins2Akita males), improving clinical correlates and conferring neuroprotection regardless of glycaemic status. Our findings provide translational insights for neuroprotection in the diabetic retina through the holistic recovery of MQC.


Assuntos
Adenosina , Diabetes Mellitus Experimental , Cinetina , Dinâmica Mitocondrial , Masculino , Camundongos , Humanos , Animais , Neuroproteção , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Mitocôndrias/metabolismo
2.
Cells ; 13(2)2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38247805

RESUMO

Low-dose aspirin (LDA) is efficacious in preventing preeclampsia, but its mechanism of action is unclear. Conflicting evidence suggests that it may inhibit placental trophoblast release of soluble fms-like tyrosine kinase-1 (sFlt1), a key mediator of preeclampsia. We examined whether, and at what concentrations, aspirin and its principal metabolite, salicylic acid, modulate sFlt1 release and/or expression in trophoblasts. Human trophoblast lines BeWo and HTR-8/SVneo were cultured; BeWo cells were also treated with 1% oxygen vs. normoxia to mimic hypoxia in preeclamptic placentas. Cells were treated with aspirin or salicylic acid vs. vehicle for 24 h at concentrations relevant to LDA and at higher concentrations. Protein concentrations (ELISA) and mRNA expression (RT-PCR) of sFlt1 were determined. Under normoxia, LDA-relevant concentrations of aspirin (10-50 µmol/L) or salicylic acid (20-100 µmol/L) had no significant effect on sFlt1 protein release or mRNA expression in BeWo cells. However, inhibition was observed at higher concentrations (1 mmol/L for aspirin and ≥200 µmol/L for salicylic acid). Hypoxia enhanced sFlt1 protein release and mRNA expression in BeWo cells, but these responses were not significantly affected by either aspirin or salicylic acid at LDA concentrations. Similarly, neither drug altered sFlt1 protein secretion or mRNA expression in normoxic HTR-8/SVneo cells at LDA concentrations. We suggest that direct modulation of trophoblast release or expression of sFlt1 is unlikely to be a mechanism underlying the clinical efficacy of LDA in preeclampsia.


Assuntos
Aspirina , Pré-Eclâmpsia , Trofoblastos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Feminino , Humanos , Gravidez , Aspirina/farmacologia , Hipóxia , Placenta , Pré-Eclâmpsia/tratamento farmacológico , Receptores Proteína Tirosina Quinases , RNA Mensageiro/genética , Ácido Salicílico/farmacologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos
3.
J Diabetes Res ; 2023: 8537693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601831

RESUMO

Aims: We aimed to determine whether plasma advanced glycation end products or oxidation products (AGE/oxidation-P) predict altered renal function and/or preeclampsia (PE) in pregnant women with type 1 diabetes. Methods: Prospectively, using a nested case-control design, we studied 47 pregnant women with type 1 diabetes, of whom 23 developed PE and 24 did not. Nineteen nondiabetic, normotensive pregnant women provided reference values. In plasma obtained at ~12, 22, and 32 weeks' gestation (visits 1, 2, and 3; V1-V3), we measured five AGE products (carboxymethyllysine (CML), carboxyethyl-lysine (CEL), methylglyoxal-hydroimidazolone (MGH1), 3-deoxyglucosone hydroimidazolone (3DGH), and glyoxal-hydroimidazolone (GH1)) and four oxidation products (methionine sulfoxide (MetSO), 2-aminoadipic acid (2-AAA), 3-nitrotyrosine (3NT), and dityrosine (DT)), by liquid chromatography/mass spectroscopy. Clinical outcomes were "estimated glomerular filtration rate" (eGFR) at each visit and onset of PE. Results: In diabetic women, associations between AGE/oxidation-P and eGFR were found only in those who developed PE. In this group, CEL, MGH1, and GH1 at V2 and CML, CEL, MGH1, and GH1 at V3 were inversely associated with contemporaneous eGFR, while CEL, MGH1, 3DGH, and GH1 at V2 were inversely associated with eGFR at V3 (all p < 0.05). There were no associations of plasma AGE or oxidation-P with pregnancy-related development of proteinuria or PE. Conclusions: Inverse associations of second and early third trimester plasma AGE with eGFR among type 1 diabetic women who developed PE suggest that these patients constitute a subset susceptible to AGE-mediated injury and thus to cardiorenal complications later in life. However, AGE/oxidation-P did not predict PE in type 1 diabetic women.


Assuntos
Diabetes Mellitus Tipo 1 , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Gestantes , Valores de Referência , Produtos Finais de Glicação Avançada , Rim/fisiologia
4.
JCI Insight ; 7(18)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36134661

RESUMO

Loss of retinal blood flow autoregulation is an early feature of diabetes that precedes the development of clinically recognizable diabetic retinopathy (DR). Retinal blood flow autoregulation is mediated by the myogenic response of the retinal arterial vessels, a process that is initiated by the stretch­dependent activation of TRPV2 channels on the retinal vascular smooth muscle cells (VSMCs). Here, we show that the impaired myogenic reaction of retinal arterioles from diabetic animals is associated with a complete loss of stretch­dependent TRPV2 current activity on the retinal VSMCs. This effect could be attributed, in part, to TRPV2 channel downregulation, a phenomenon that was also evident in human retinal VSMCs from diabetic donors. We also demonstrate that TRPV2 heterozygous rats, a nondiabetic model of impaired myogenic reactivity and blood flow autoregulation in the retina, develop a range of microvascular, glial, and neuronal lesions resembling those observed in DR, including neovascular complexes. No overt kidney pathology was observed in these animals. Our data suggest that TRPV2 dysfunction underlies the loss of retinal blood flow autoregulation in diabetes and provide strong support for the hypothesis that autoregulatory deficits are involved in the pathogenesis of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Artéria Retiniana , Animais , Arteríolas , Homeostase/fisiologia , Humanos , Ratos , Vasos Retinianos , Canais de Cátion TRPV/genética
5.
Calcif Tissue Int ; 111(3): 248-255, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35622095

RESUMO

The perinatal period is a time of substantial bone mass accrual with many factors affecting long-term bone mineralization. Currently it is unclear what effect maternal gestational/type 2 diabetes has on infant bone mass accrual. This is a prospective study of offspring of Native American and Hispanic mothers with normoglycemia (n = 94) and gestational diabetes or type 2 diabetes (n = 64). Infant anthropometrics were measured at birth, 1, and 6 months of age. Cord blood leptin, high-molecular weight adiponectin (HMWA), pigment epithelium-derived factor (PEDF), vascular epithelium growth factor (VEGF), endoglin, and C-peptide were measured by ELISA. Infants had bone mineral density measurement at 1 month or/and 6 months of age using dual-energy x-ray absorptiometry scan. Mothers with diabetes were older (31 ± 6 years vs 25 ± 4 years) and had higher pre-pregnancy BMI (32.6 ± 5.8 vs 27.2 ± 6.4 kg/m2) than control mothers. Mean HbA1C of mothers with diabetes was 5.9 ± 1.0% compared to 5.1 ± 0.3% in controls early in pregnancy. Infants born to mothers with diabetes (DM-O) were born at a slightly lower gestational age compared to infants born to control mothers (Con-O). There was no difference in total body less head bone mineral content (BMC) or bone mineral density (BMD) between DM-O and Con-O. For both groups together, bone area, BMD, and BMC tracked over the first 6 months of life (r: 0.56, 0.38, and 0.48, respectively). Percent fat was strongly and positively correlated with BMC at 1 month of age (r = 0.44; p < 0.001) and BMC at both 1 and 6 months of age correlated strongly with birth weight. There were no associations between infant bone mass and cord blood leptin, PEDF, or VEGF, while C-peptide had a significant correlation with BMC at 1 and 6 months only in DM-O (p = 0.01 and 0.03, respectively). Infants born to mothers with well-controlled gestational/type 2 diabetes have normal bone mass accrual. Bone mineral content during this time is highly correlated with indices of infant growth and the association of bone mineral indices with percent body fat suggests that bone-fat crosstalk is operative early in life.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Adipocinas , Adiposidade , Densidade Óssea , Peptídeo C , Feminino , Sangue Fetal , Humanos , Lactente , Recém-Nascido , Leptina , Obesidade , Gravidez , Estudos Prospectivos , Fator A de Crescimento do Endotélio Vascular
6.
J Ocul Pharmacol Ther ; 38(2): 156-166, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964655

RESUMO

Purpose: Anesthesia is necessary to conduct rodent electroretinograms (ERGs). We evaluated utility of the α2-agonist medetomidine versus xylazine for ERG studies in nondiabetic and diabetic rats. Pentobarbital was included as a comparator. Methods: Male Sprague-Dawley rats, with and without streptozotocin (STZ)-induced diabetes, were anesthetized with medetomidine (1 mg/kg), xylazine (10 mg/kg) (both with ketamine 75 mg/kg), or pentobarbital (70 mg/kg). The depth of anesthesia was assessed, and if adequate, scotopic ERGs were recorded. Blood glucose was monitored. Results: In nondiabetic rats, all three agents induced satisfactory anesthesia, but with differing durations: medetomidine > pentobarbital > xylazine. ERG responses were similar under medetomidine and xylazine, but relatively reduced under pentobarbital. Both α2-agonists (but not pentobarbital) elicited marked hyperglycemia (peak values 316.1 ± 42.6 and 300.3 ± 29.5 mg/dL, respectively), persisting for 12 h. In diabetic rats, elevated blood glucose concentrations were not affected by any of the agents, but the depth of anesthesia under medetomidine and xylazine was inadequate for ERG recording. Conclusions: In nondiabetic rats, medetomidine and xylazine elicited comparable effects on ERGs that differ from pentobarbital, but both perturbed glucose metabolism, potentially confounding experimental outcomes. In STZ-diabetic rats, neither α2-agent provided adequate anesthesia, while pentobarbital did so. Problems with α2-anesthetic agents, including medetomidine, must be recognized to ensure meaningful interpretation of experimental results.


Assuntos
Anestesia , Diabetes Mellitus Experimental , Adrenérgicos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Masculino , Medetomidina/farmacologia , Pentobarbital/farmacologia , Ratos , Ratos Sprague-Dawley , Xilazina/farmacologia
7.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769307

RESUMO

We have previously reported that inhibition of the Janus kinase 1 (JAK1) signaling ameliorates IL-17A-mediated blood-retinal barrier (BRB) dysfunction. Higher levels of IL-17A have been observed in the blood and intraocular fluids in patients with diabetic retinopathy (DR), in particular those with diabetic macular oedema. This study aimed to understand whether JAK1 inhibition could prevent BRB dysfunction in db/db mice, a model of type 2 diabetes (T2D). An in vitro study showed that high glucose treatment disrupted the junctional distribution of claudin-5 in bEnd3 cells and ZO-1 in ARPE19 cells and that tofacitinib citrate treatment prevented high glucose-mediated tight junction disruption. Albumin leakage, accompanied by increased levels of the phosphorylated form of JAK1 (pJAK1), was observed in three-month-old db/db mice. Treatment of two-and-a-half-month-old db/db mice with tofacitinib citrate for two weeks significantly reduced retinal albumin leakage and reduced pJAK1 expression. pJAK1 expression was also detected in human DR retina. Our results suggest that JAK1 inhibition can ameliorate BRB dysfunction in T2D, and JAK1 inhibitors such as tofacitinib citrate may be re-purposed for the management of diabetic macular oedema.


Assuntos
Permeabilidade Capilar , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/tratamento farmacológico , Modelos Animais de Doenças , Piperidinas/farmacologia , Pirimidinas/farmacologia , Retina/efeitos dos fármacos , Animais , Barreira Hematorretiniana , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Feminino , Humanos , Masculino , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Retina/patologia
8.
Sci Rep ; 11(1): 14182, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244538

RESUMO

In type 2 diabetes, hyperuricemia is associated with cardiovascular disease (CVD) and the metabolic syndrome (MetS), but associations in type 1 diabetes (T1D) have not been well-defined. This study examined the relationships between serum urate (SU) concentrations, clinical and biochemical factors, and subsequent cardiovascular events in a well-characterized cohort of adults with T1D. In 973 participants with T1D in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC), associations were defined between SU, measured once in blood collected 1997-2000, and (a) concurrent MetS and (b) incident 'any CVD' and major adverse cardiovascular events (MACE) through 2013. SU was higher in men than women [mean (SD): 4.47 (0.99) vs. 3.39 (0.97) mg/dl, respectively, p < 0.0001], and was associated with MetS features in both (men: p = 0.0016; women: p < 0.0001). During follow-up, 110 participants (11%) experienced "any CVD", and 53 (5%) a MACE. Analyzed by quartiles, SU was not associated with subsequent CVD or MACE. In women, SU as a continuous variable was associated with MACE (unadjusted HR: 1.52; 95% CI 1.07-2.16; p = 0.0211) even after adjustment for age and HbA1c (HR: 1.47; 95% CI 1.01-2.14; p = 0.0467). Predominantly normal range serum urate concentrations in T1D were higher in men than women and were associated with features of the MetS. In some analyses of women only, SU was associated with subsequent MACE. Routine measurement of SU to assess cardiovascular risk in T1D is not merited.Trial registration clinicaltrials.gov NCT00360815 and NCT00360893.


Assuntos
Doenças Cardiovasculares/sangue , Diabetes Mellitus Tipo 1/sangue , Ácido Úrico/sangue , Adulto , Doenças Cardiovasculares/etiologia , Diabetes Mellitus Tipo 1/complicações , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/etiologia , Pessoa de Meia-Idade
9.
Ecology ; 102(8): e03411, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34028015

RESUMO

Biotic resistance is often posited, but rarely known, to be the cause of invasion failure. Competition and predation are the most frequently identified processes that may prevent or limit the establishment of nonnative species. Interactions between nonnative and native species that involve intraguild predation (IGP) are very common in nature, although theory predicts most IGP systems should be unstable and lead to extinction. If this prediction is true, the frequency of invasion failures due to IGP may be underappreciated because of their fleeting nature and, thus, studies of unstable IGP systems are lacking, despite the opportunities they offer for understanding the factors affecting their unstable dynamics. We investigated a failed invasion involving an IGP relationship. In Florida, the guppy (Poecilia reticulata), a worldwide invader, fails to establish in the presence of eastern mosquitofish (Gambusia holbrooki). We tested whether and how resident mosquitofish cause guppy invasion failure using replicated mesocosm and aquarium trials. Both the predator and competitor components of the IGP relationship were strongly asymmetrical, with large impacts on guppies. We identified two effects, direct consumption of neonates and aggressive interference competition, that limited survival and recruitment. The highly unstable nature of this IGP relationship is the primary cause of the failure of the guppy to establish in Florida. Our study shows that the transient nature of an ephemeral IGP relationship can yield important insights into the underlying causes of invasion failure, including the role of strong biotic resistance.


Assuntos
Espécies Introduzidas , Comportamento Predatório , Animais , Florida , Humanos , Recém-Nascido
10.
J Nutr ; 151(5): 1128-1138, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33693835

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) is a growing public health concern and maternal obesity and poor dietary intakes could be implicated. Dietary polyphenols and fiber mitigate the risk of diabetes and its complications, but little is known about their efficacy in preventing GDM. OBJECTIVES: We examined the effects of whole blueberry and soluble fiber supplementation on primary outcomes of cardiometabolic profiles in women at high risk of developing GDM. METHODS: Women (n = 34; mean ± SD age: 27 ± 5 y; BMI: 35.5 ± 4.0 kg/m2; previous history of GDM ∼56%; Hispanic ∼79%) were recruited in early pregnancy (<20 weeks of gestation) and randomly assigned to 1 of the following 2 groups for 18 wk: intervention (280 g whole blueberries and 12 g soluble fiber per day) and standard prenatal care (control). Both groups received nutrition education and maintained 24-h food recalls throughout the study. Data on anthropometrics, blood pressure, and blood samples for biochemical analyses were collected at baseline (<20 weeks), midpoint (24-28 weeks), and end (32-36 weeks) of gestation. Diagnosis of GDM was based on a 2-step glucose challenge test (GCT). Data were analyzed using a mixed-model ANOVA. RESULTS: Maternal weight gain was significantly lower in the dietary intervention than in the control group at the end of the trial (mean ± SD: 6.8 ± 3.2 kg compared with 12.0 ± 4.1 kg, P = 0.001). C-reactive protein was also lower in the intervention than in the control group (baseline: 6.1 ± 4.0 compared with 6.8 ± 7.2 mg/L; midpoint: 6.1 ± 3.7 compared with 7.5 ± 7.3 mg/L; end: 5.5 ± 2.2 compared with 9.5 ± 6.6 mg/L, respectively, P = 0.002). Blood glucose based on GCT was lower in the intervention than in the control (100 ± 33 mg/dL compared with 131 ± 40 mg/dL, P < 0.05). Conventional lipids (total, LDL, and HDL cholesterol and triglycerides) did not differ between groups over time. No differences were noted in infant birth weight. CONCLUSIONS: Whole blueberry and soluble fiber supplementation may prevent excess gestational weight gain and improve glycemic control and inflammation in women with obesity.This trial was registered at clinicaltrials.gov as NCT03467503.


Assuntos
Mirtilos Azuis (Planta) , Diabetes Gestacional/prevenção & controle , Dieta , Fibras na Dieta/administração & dosagem , Obesidade Materna/dietoterapia , Fenômenos Fisiológicos da Nutrição Pré-Natal , Adulto , Biomarcadores/sangue , Glicemia , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Inflamação/sangue , Inflamação/metabolismo , Insulina , Lipídeos/sangue , Obesidade Materna/complicações , Gravidez , Adulto Jovem
11.
FASEB Bioadv ; 3(1): 23-35, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33521587

RESUMO

Preeclampsia remains a challenge without an effective therapy. Evidence supports targetability of soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng), which are released excessively from the placenta under ischemic and hypoxic stresses. We compared four trophoblast cell lines, BeWo, Jar, Jeg-3, and HTR-8/SVneo, in order to identify a suitable model for drug screening. Cultured trophoblasts were exposed to 1% oxygen vs. normoxia for 24-48 hr; human umbilical vein and aortic endothelial cells were included for comparison. Supernatant sFlt-1 and sEng concentrations were measured by ELISA, and sFlt-1 mRNA expression determined by RT-PCR. Cellular responses to experimental therapeutics were explored. All four trophoblast lines secreted sEng, which did not increase by hypoxia. BeWo, Jar, and Jeg-3 exhibited significantly enhanced expression of sFlt-1 i13 and e15a mRNA in response to hypoxia; however, only BeWo released a detectable level of sFlt-1 protein, which was doubled by hypoxia. In contrast, hypoxia decreased sFlt-1 mRNA expression and protein release in HTR-8/SVneo, similarly to endothelial cells. The cellular mechanism involved HIFα. BeWo responded to representative agents similarly to human primary placental tissues in the literature. These data support that the BeWo-hypoxia model mimics a key pathogenic mechanism of preeclampsia and has potential value for translational drug discovery.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33504507

RESUMO

INTRODUCTION: Pre-eclampsia (PE) is increased ~4-fold by maternal diabetes. Elevated plasma antiangiogenic factors, soluble fms-like tyrosine kinase (sFLT-1) and soluble endoglin (sENG), precede PE onset. We investigated whether diabetes-related stresses, modified lipoproteins and elevated glucose enhance trophoblast sFLT-1 and sENG release and/or alter placental barrier function and whether oxidized low-density lipoprotein (Ox-LDL) is in placental tissue. RESEARCH DESIGN AND METHODS: HTR8/SVneo cells were exposed to 'heavily-oxidized, glycated' LDL (HOG-LDL) versus native LDL (N-LDL) (10-200 mg protein/L) for 24 hours ±pretreatment with glucose (30 mmol/L, 72 hours). Concentrations of sFLT-1 and sENG in supernatants (by ELISA) and expressions of sFLT-1-I13 and sFLT-1-E15A isoforms, endoglin (ENG) and matrix metalloproteinase-14 (MMP-14; by RT-PCR) were quantified. For barrier studies, JAR cells were cultured in Transwell plates (12-14 days), then exposed to LDL. Transepithelial electrical resistance (TEER) was measured after 6, 12 and 24 hours. In placental sections from women with and without type 1 diabetes, immunostaining of apolipoprotein B100 (ApoB, a marker of LDL), Ox-LDL and lipoxidation product 4-hydroxynonenal was performed. RESULTS: HOG-LDL (50 mg/L) increased sFLT-1 (2.7-fold, p<0.01) and sENG (6.4-fold, p<0.001) in supernatants versus N-LDL. HOG-LDL increased expression of sFLT-1-I13 (twofold, p<0.05), sFLT-1-E15A (1.9-fold, p<0.05), ENG (1.6-fold, p<0.01) and MMP-14 (1.8-fold, p<0.05) versus N-LDL. High glucose did not by itself alter sFLT-1 or sENG concentrations, but potentiated effects of HOG-LDL on sFLT-1 by 1.5-fold (p<0.05) and on sENG by 1.8-fold (p<0.01). HOG-LDL (200 mg/L) induced trophoblast barrier impairment, decreasing TEER at 6 hours (p<0.01), 12 hours (p<0.01) and 24 hours (p<0.05) versus N-LDL. Immunostaining of term placental samples from women both with and without diabetes revealed presence of intravillous modified lipoproteins. CONCLUSION: These findings may explain, in part, the high risk for PE in women with diabetes. The trophoblast culture model has potential for evaluating novel therapies targeting barrier dysfunction.


Assuntos
Diabetes Mellitus , Pré-Eclâmpsia , Feminino , Humanos , Lipoproteínas , Placenta , Gravidez , Trofoblastos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular
13.
J Ocul Pharmacol Ther ; 36(10): 754-764, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33107777

RESUMO

Purpose: There is a lack of treatment for early diabetic retinopathy (DR), including blood-retina barrier (BRB) breakdown. The robust clinical benefit of fenofibrate in DR provides an opportunity to explore disease mechanisms and therapeutic targets. We have previously found that modified lipoproteins contribute to DR and that fenofibrate protects the inner BRB. We now investigate (1) whether modified lipoproteins elicit outer BRB injury and (2) whether fenofibrate may alleviate such damage. Methods: Human retinal pigment epithelium ARPE-19 cells were cultured in semipermeable transwells to establish a monolayer barrier and then exposed to heavily oxidized, glycated low-density lipoprotein (HOG-LDL, 25-300 mg/L, up to 24 h) versus native (N)-LDL. Transepithelial electric resistance (TEER) and FITC-dextran permeability were measured. The effects of fenofibrate, its active metabolite fenofibric acid, and other peroxisome proliferator-activated receptor (PPARα) agonists (gemfibrozil, bezafibrate, and WY14643) were evaluated, with and without the PPARα antagonist GW6471 or the adenosine monophosphate-activated protein kinase (AMPK) inhibitor Compound C. Results: HOG-LDL induced concentration- and time-dependent barrier impairment, decreasing TEER and increasing dextran leakage, effects that were amplified by high glucose. Fenofibric acid, but not fenofibrate, gemfibrozil, bezafibrate, or WY14643, attenuated barrier impairment. This effect was reversed significantly by Compound C, but not by GW6471. Conclusions: Modified lipoproteins elicited outer BRB injury in an experimental model, which was reduced by fenofibric acid through a PPARα-independent, AMPK-mediated mechanism. These findings suggest a protective role of fenofibric acid on the outer BRB in diabetic retina.


Assuntos
Barreira Hematorretiniana/efeitos dos fármacos , Retinopatia Diabética/tratamento farmacológico , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Células Cultivadas , Dextranos/metabolismo , Retinopatia Diabética/patologia , Impedância Elétrica , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fatores de Tempo
14.
Mol Med ; 26(1): 76, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762639

RESUMO

BACKGROUND: Diabetes during pregnancy affects placental mitochondrial content and function, which has the potential to impact fetal development and the long-term health of offspring. Resistin is a peptide hormone originally discovered in mice as an adipocyte-derived factor that induced insulin resistance. In humans, resistin is primarily secreted by monocytes or macrophages. The regulation and roles of human resistin in diabetes during pregnancy remain unclear. METHODS: Fetal resistin levels were measured in cord blood from pregnancies with (n = 42) and without maternal diabetes (n = 81). Secretion of resistin from cord blood mononuclear cells (CBMCs) was measured. The actions of human resistin in mitochondrial biogenesis were determined in placental trophoblastic cells (BeWo cells) or human placental explant. RESULTS: Concentrations of human resistin in cord sera were higher in diabetic pregnancies (67 ng/ml) compared to healthy controls (50 ng/ml, P < 0.05), and correlated (r = 0.4, P = 0.002) with a measure of maternal glycemia (glucose concentration 2 h post challenge). Resistin mRNA was most abundant in cord blood mononuclear cells (CBMCs) compared with placenta and mesenchymal stem cells (MSCs). Secretion of resistin from cultured CBMCs was increased in response to high glucose (25 mM). Exposing BeWo cells or human placental explant to resistin decreased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), mitochondrial abundance, and ATP production. CONCLUSIONS: Resistin is increased in fetal circulation of infants exposed to the diabetic milieu, potentially reflecting a response of monocytes/macrophages to hyperglycemia and metabolic stresses associated with diabetes during pregnancy. Increased exposure to resistin may contribute to mitochondrial dysfunction and aberrant energy metabolism characteristic of offspring exposed to diabetes in utero.


Assuntos
Diabetes Gestacional/sangue , Mitocôndrias/metabolismo , Biogênese de Organelas , Placenta/metabolismo , Resistina/sangue , Trifosfato de Adenosina/metabolismo , Adulto , Biomarcadores , Glicemia , Estudos de Casos e Controles , DNA Mitocondrial , Diabetes Gestacional/diagnóstico , Feminino , Sangue Fetal/citologia , Humanos , Leucócitos Mononucleares/metabolismo , Exposição Materna , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/genética , Placenta/irrigação sanguínea , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Estresse Fisiológico , Trofoblastos/metabolismo
15.
Diabetes ; 69(11): 2440-2445, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32826295

RESUMO

We determined the relationship between plasma kallikrein and cardiovascular disease (CVD) outcomes as well as major adverse cardiovascular events (MACE) in the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) cohort of type 1 diabetes (T1D). Plasma kallikrein levels were measured longitudinally in 693 subjects at DCCT baseline (1983-1989), midpoint (1988-1991), and end (1993) and at EDIC years 4-6 (1997-1999), 8-10 (2001-2003), and 11-13 (2004-2006). Cox proportional hazards regression models assessed the association between plasma kallikrein levels and the risk of CVD. In unadjusted models, higher plasma kallikrein levels were associated with higher risk of any CVD during DCCT/EDIC (hazard ratio [HR] = 1.16 per 20 nmol/L higher levels of plasma kallikrein; P = 0.0177) as well as over the EDIC-only period (HR = 1.22; P = 0.0024). The association between plasma kallikrein levels and the risk of any CVD remained significant during the EDIC follow-up after adjustment for age and mean HbA1c (HR = 1.20; P = 0.0082) and in the fully adjusted model for other CVD risk factors (HR = 1.17; P = 0.0330). For MACE, higher plasma kallikrein levels were associated with higher risk in the unadjusted (HR = 1.25; P = 0.0145), minimally adjusted (HR = 1.23; P = 0.0417, and fully adjusted (HR = 1.27; P = 0.0328) models for EDIC only. These novel findings indicate that plasma kallikrein level associates with the risk of any CVD and MACE in T1D individuals.


Assuntos
Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/patologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/terapia , Calicreínas/sangue , Adulto , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Fatores de Risco , Adulto Jovem
16.
Nutrients ; 12(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664257

RESUMO

The risk for preeclampsia (PE) is enhanced ~4-fold by the presence of maternal type 1 diabetes (T1DM). Vitamin D is essential for healthy pregnancy. We assessed the total, bioavailable, and free concentrations of plasma 25-hydroxyvitamin D (25(OH)D), 1,25-dihydroxyvitamin D (1,25(OH)2D), and vitamin D binding protein (VDBP) at ~12, ~22, and ~32 weeks' gestation ("Visits" (V) 1, 2, and 3, respectively) in 23 T1DM women who developed PE, 24 who remained normotensive, and 19 non-diabetic, normotensive women (reference controls). 25(OH)D deficiency was more frequent in diabetic than non-diabetic women (69% vs. 22%, p < 0.05), but no measure of 25(OH)D predicted PE. By contrast, higher 1,25(OH)2D concentrations at V2 (total, bioavailable, and free: p < 0.01) and V3 (bioavailable: p < 0.05; free: p < 0.01), lower concentrations of VDBP at V3 (p < 0.05), and elevated ratios of 1,25(OH)2D/VDBP (V2, V3: p < 0.01) and 1,25(OH)2D/25(OH)D (V3, p < 0.05) were all associated with PE, and significance persisted in multivariate analyses. In summary, in women with T1DM, concentrations of 1,25(OH)2D were higher, and VDBP lower, in the second and third trimesters in women who later developed PE than in those who did not. 1,25(OH)2D may serve as a new marker for PE risk and could be implicated in pathogenesis.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Pré-Eclâmpsia/sangue , Gravidez em Diabéticas/sangue , Proteína de Ligação a Vitamina D/sangue , Vitamina D/sangue , Adulto , Biomarcadores/sangue , Feminino , Humanos , Estudos Longitudinais , Gravidez , Primeiro Trimestre da Gravidez/sangue , Segundo Trimestre da Gravidez/sangue , Vitamina D/análogos & derivados , Deficiência de Vitamina D/sangue , Adulto Jovem
17.
Nutrients ; 12(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605005

RESUMO

Dyslipidemia and inflammation exacerbate postprandial metabolic stress in people with diabetes. Acute dietary supplementation with polyphenols shows promise in improving postprandial metabolic stress in type 2 diabetes (T2D). Cocoa is a rich source of dietary polyphenols with demonstrated cardioprotective effects in adults without diabetes. To date, the acute effects of cocoa on postprandial lipids and inflammation have received little attention in the presence of T2D. This report expands on our earlier observation that polyphenol-rich cocoa, given as a beverage with a fast-food-style, high-fat breakfast, increased postprandial high-density lipoprotein-cholesterol (HDL-C) in adults with T2D. We now test whether polyphenol-rich cocoa modulated postprandial apolipoproteins (Apo-A1, B), non-esterified fatty acids, nuclear magnetic resonance (NMR)-derived lipoprotein subclass profiles, and select biomarkers of inflammation following the same dietary challenge. We found that cocoa decreased NMR-derived concentrations of total very low-density lipoprotein and chylomicron particles and increased the concentration of total HDL particles over the 6-hour postprandial phase. Serum interleukin-18 was decreased by cocoa vs. placebo. Thus, polyphenol-rich cocoa may alleviate postprandial dyslipidemia and inflammation following a high-fat dietary challenge in adults with T2D. The study was registered at clinicaltrials.gov as NCT01886989.


Assuntos
Chocolate , Diabetes Mellitus Tipo 2/metabolismo , Gorduras na Dieta , Lipoproteínas , Período Pós-Prandial/efeitos dos fármacos , Biomarcadores/sangue , Biomarcadores/metabolismo , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/metabolismo , Método Duplo-Cego , Feminino , Humanos , Inflamação/metabolismo , Lipoproteínas/sangue , Lipoproteínas/classificação , Lipoproteínas/metabolismo , Masculino , Pessoa de Meia-Idade , Preparações de Plantas/farmacologia
18.
Am J Physiol Endocrinol Metab ; 318(2): E131-E144, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821039

RESUMO

We reported previously that increased acid sphingomyelinase (ASMase)-catalyzed hydrolysis of sphingomyelin, which leads to increases in ceramide and sphingosine 1 phosphate (S1P), played a key role in the synergistic upregulation of proinflammatory cytokines by palmitic acid (PA), a major saturated fatty acid, and lipopolysaccharide (LPS) in macrophages. Since macrophages are vital players in nonalcoholic steatohepatitis (NASH) and atherosclerosis, we assessed the effect of ASMase inhibition on NASH and atherosclerosis cooperatively induced by high-PA-containing high-fat diet (HP-HFD) and LPS in LDL receptor-deficient (LDLR-/-) mice. LDLR-/- mice were fed HP-HFD, injected with low dose of LPS and treated with or without the ASMase inhibitor amitriptyline. The neutral sphingomyelinase inhibitor GW4869 was used as control. Metabolic study showed that both amitriptyline and GW4869 reduced glucose, lipids, and insulin resistance. Histological analysis and Oil Red O staining showed that amitriptyline robustly reduced hepatic steatosis while GW4869 had modest effects. Interestingly, immunohistochemical study showed that amitriptyline, but not GW4869, strongly reduced hepatic inflammation. Furthermore, results showed that both amitriptyline and GW4869 attenuated atherosclerosis. To elucidate the underlying mechanisms whereby amitriptyline inhibited both NASH and atherosclerosis, but GW4869 only inhibited atherosclerosis, we found that amitriptyline, but not GW4869, downregulated proinflammatory cytokines in macrophages. Finally, we found that inhibition of sphingosine 1 phosphate production is a potential mechanism whereby amitriptyline inhibited proinflammatory cytokines. Collectively, this study showed that amitriptyline inhibited NASH and atherosclerosis through modulation of sphingolipid metabolism in LDLR-/- mice, indicating that sphingolipid metabolism in macrophages plays a crucial role in the linkage of NASH and atherosclerosis.


Assuntos
Amitriptilina/farmacologia , Amitriptilina/uso terapêutico , Aterosclerose/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Compostos de Anilina/farmacologia , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Compostos de Benzilideno/farmacologia , Glicemia/metabolismo , Citocinas/biossíntese , Dieta Hiperlipídica , Regulação para Baixo , Resistência à Insulina , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética
19.
JCI Insight ; 4(23)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31661466

RESUMO

Mitochondrial quality control (MQC) is crucial for regulating CNS homeostasis, and its disruption has been implicated in the pathogenesis of some of the most common neurodegenerative diseases. In healthy tissues, the maintenance of MQC depends upon an exquisite balance between mitophagy (removal of damaged mitochondria by autophagy) and biogenesis (de novo synthesis of mitochondria). Here, we show that mitophagy is disrupted in diabetic retinopathy (DR) and decoupled from mitochondrial biogenesis during the progression of the disease. Diabetic retinas from human postmortem donors and experimental mice exhibit a net loss of mitochondrial contents during the early stages of the disease process. Using diabetic mitophagy-reporter mice (mitoQC-Ins2Akita) alongside pMitoTimer (a molecular clock to address mitochondrial age dynamics), we demonstrate that mitochondrial loss arose due to an inability of mitochondrial biogenesis to compensate for diabetes-exacerbated mitophagy. However, as diabetes duration increases, Pink1-dependent mitophagy deteriorates, leading to the build-up of mitochondria primed for degradation in DR. Impairment of mitophagy during prolonged diabetes is linked with the development of retinal senescence, a phenotype that blunted hyperglycemia-induced mitophagy in mitoQC primary Müller cells. Our findings suggest that normalizing mitochondrial turnover may preserve MQC and provide therapeutic options for the management of DR-associated complications.


Assuntos
Retinopatia Diabética/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Animais , Linhagem Celular , Diabetes Mellitus , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Dinâmica Mitocondrial/fisiologia , Mitofagia/genética , Proteínas Quinases/metabolismo , Retina/metabolismo
20.
Food Funct ; 10(10): 6227-6243, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31591634

RESUMO

Dietary berries are a rich source of several nutrients and phytochemicals and in recent years, accumulating evidence suggests they can reduce risks of several chronic diseases, including type 2 diabetes (T2D). The objective of this review is to summarize and discuss the role of dietary berries (taken as fresh, frozen, or other processed forms) on insulin resistance and biomarkers of T2D in human feeding studies. Reported feeding trials involve different berries taken in different forms, and consequently differences in nutritional or polyphenol composition must be considered in their interpretation. Commonly consumed berries, especially cranberries, blueberries, raspberries and strawberries, ameliorate postprandial hyperglycemia and hyperinsulinemia in overweight or obese adults with insulin resistance, and in adults with the metabolic syndrome (MetS). In non-acute long-term studies, these berries either alone, or in combination with other functional foods or dietary interventions, can improve glycemic and lipid profiles, blood pressure and surrogate markers of atherosclerosis. Studies specifically in people with T2D are few, and more knowledge is needed. Nevertheless, existing evidence, although sparse, suggests that berries have an emerging role in dietary strategies for the prevention of diabetes and its complications in adults. Despite the beneficial effects of berries on diabetes prevention and management, they must be consumed as part of a healthy and balanced diet.


Assuntos
Diabetes Mellitus Tipo 2/dietoterapia , Frutas/metabolismo , Resistência à Insulina , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Frutas/química , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA