Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Exp Neurobiol ; 33(2): 107-117, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38724480

RESUMO

Cognitive dysfunction, a significant complication of type 2 diabetes mellitus (T2DM), can potentially manifest even from the early stages of the disease. Despite evidence of global brain atrophy and related cognitive dysfunction in early-stage T2DM patients, specific regions vulnerable to these changes have not yet been identified. The study enrolled patients with T2DM of less than five years' duration and without chronic complications (T2DM group, n=100) and demographically similar healthy controls (control group, n=50). High-resolution T1-weighted magnetic resonance imaging data were subjected to independent component analysis to identify structurally significant components indicative of morphometric networks. Within these networks, the groups' gray matter volumes were compared, and distinctions in memory performance were assessed. In the T2DM group, the relationship between changes in gray matter volume within these networks and declines in memory performance was examined. Among the identified morphometric networks, the T2DM group exhibited reduced gray matter volumes in both the precuneus (Bonferroni-corrected p=0.003) and insular-opercular (Bonferroni-corrected p=0.024) networks relative to the control group. Patients with T2DM demonstrated significantly lower memory performance than the control group (p=0.001). In the T2DM group, reductions in gray matter volume in both the precuneus (r=0.316, p=0.001) and insular-opercular (r=0.199, p=0.047) networks were correlated with diminished memory performance. Our findings indicate that structural alterations in the precuneus and insular-opercular networks, along with memory dysfunction, can manifest within the first 5 years following a diagnosis of T2DM.

2.
Exp Neurobiol ; 33(2): 99-106, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38724479

RESUMO

Anosmia, characterized by the loss of smell, is associated not only with dysfunction in the peripheral olfactory system but also with changes in several brain regions involved in olfactory processing. Specifically, the orbitofrontal cortex is recognized for its pivotal role in integrating olfactory information, engaging in bidirectional communication with the primary olfactory regions, including the olfactory cortex, amygdala, and entorhinal cortex. However, little is known about alterations in structural connections among these brain regions in patients with anosmia. In this study, high-resolution T1-weighted images were obtained from participants. Utilizing the volumes of key brain regions implicated in olfactory function, we employed a structural covariance approach to investigate brain reorganization patterns in patients with anosmia (n=22) compared to healthy individuals (n=30). Our structural covariance analysis demonstrated diminished connectivity between the amygdala and entorhinal cortex, components of the primary olfactory network, in patients with anosmia compared to healthy individuals (z=-2.22, FDR-corrected p=0.039). Conversely, connectivity between the orbitofrontal cortex-a major region in the extended olfactory network-and amygdala was found to be enhanced in the anosmia group compared to healthy individuals (z=2.32, FDR-corrected p=0.039). However, the structural connections between the orbitofrontal cortex and entorhinal cortex did not differ significantly between the groups (z=0.04, FDR-corrected p=0.968). These findings suggest a potential structural reorganization, particularly of higher-order cortical regions, possibly as a compensatory effort to interpret the limited olfactory information available in individuals with olfactory loss.

3.
Sleep ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666299

RESUMO

STUDY OBJECTIVES: Shift work interferes with circadian rhythms, affecting sleep quality and cognitive function. Poor sleep quality in shift workers can impair psychomotor performance due to fatigue and sleepiness, increasing the risk of errors, accidents, and reduced productivity. Given the potential for atrophic changes in the hippocampus due to sleep disturbances, our study investigates how poor sleep quality correlates with hippocampal structural alterations and impacts psychomotor performance among shift workers. METHODS: We recruited 100 shift workers, classifying them based on sleep quality into two groups: good sleep-SW group (n = 59) and poor sleep-SW group (n = 41). Sleep quality was assessed using both 7-day actigraphy for sleep efficiency and the Pittsburgh Sleep Quality Index. A control group of 106 non-shift workers without sleep problems (non-SW group) was also included for comparison. The outcome measures were psychomotor speed and hippocampal volumes, both total and by subfield. RESULTS: The poor sleep-SW group showed significantly smaller hippocampal volumes than both the good sleep-SW group (P<0.001) and the non-SW group (P=0.003). Longer shift work years correlated with greater reductions in hippocampal volume in this group (r=-0.42, P=0.009), unlike in the good sleep-SW group (r=0.08, P=0.541). Furthermore, they demonstrated declines in psychomotor speed relative to the non-SW group (P=0.006), which correlated with smaller hippocampal volumes (r=0.37, P=0.020). CONCLUSIONS: Shift workers with poor sleep quality exhibit significant hippocampal volume reductions and psychomotor speed decline, underscoring the importance of early intervention and support for sleep issues in this population.

4.
Compr Psychiatry ; 131: 152463, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394926

RESUMO

BACKGROUND: The presence of psychiatric disorders is widely recognized as one of the primary risk factors for suicide. A significant proportion of individuals receiving outpatient psychiatric treatment exhibit varying degrees of suicidal behaviors, which may range from mild suicidal ideations to overt suicide attempts. This study aims to elucidate the transdiagnostic symptom dimensions and associated suicidal features among psychiatric outpatients. METHODS: The study enrolled patients who attended the psychiatry outpatient clinic at a tertiary hospital in South Korea (n = 1, 849, age range = 18-81; 61% women). A data-driven classification methodology was employed, incorporating a broad spectrum of clinical symptoms, to delineate distinctive subgroups among psychiatric outpatients exhibiting suicidality (n = 1189). A reference group of patients without suicidality (n = 660) was included for comparative purposes to ascertain cluster-specific sociodemographic, suicide-related, and psychiatric characteristics. RESULTS: Psychiatric outpatients with suicidality (n = 1189) were subdivided into three distinctive clusters: the low-suicide risk cluster (Cluster 1), the high-suicide risk externalizing cluster (Cluster 2), and the high-suicide risk internalizing cluster (Cluster 3). Relative to the reference group (n = 660), each cluster exhibited distinct attributes pertaining to suicide-related characteristics and clinical symptoms, covering domains such as anxiety, externalizing and internalizing behaviors, and feelings of hopelessness. Cluster 1, identified as the low-suicide risk group, exhibited less frequent suicidal ideation, planning, and multiple attempts. In the high-suicide risk groups, Cluster 2 displayed pronounced externalizing symptoms, whereas Cluster 3 was primarily defined by internalizing and hopelessness symptoms. Bipolar disorders were most common in Cluster 2, while depressive disorders were predominant in Cluster 3. DISCUSSION: Our findings suggest the possibility of differentiating psychiatric outpatients into distinct, clinically relevant subgroups predicated on their suicide risk. This research potentially paves the way for personalizing interventions and preventive strategies that address cluster-specific characteristics, thereby mitigating suicide-related mortality among psychiatric outpatients.


Assuntos
Transtorno Bipolar , Pacientes Ambulatoriais , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Tentativa de Suicídio/psicologia , Transtorno Bipolar/psicologia , Transtornos de Ansiedade/psicologia , Ideação Suicida , Fatores de Risco
5.
Sci Rep ; 13(1): 22388, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104173

RESUMO

The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer's disease groups by identifying variances in brain age gaps between them, highlighting the algorithm's potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Humanos , Redes Neurais de Computação , Algoritmos , Encéfalo/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem
6.
Biomed Pharmacother ; 168: 115655, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806090

RESUMO

Secretion of translationally controlled tumor protein (TCTP) was found in body fluids during the late phase of allergic reactions, implicating TCTP in allergic diseases. Furthermore, blocking TCTP has been shown to be helpful in treating asthma and allergies in animal models. The objectives of this study were to produce anti-TCTP monoclonal antibodies (mAbs), test their ability to inhibit the cytokine-like function of dimeric TCTP (dTCTP) in vitro and to assess their therapeutic effects in a murine model of ovalbumin (OVA)-induced airway inflammation. We first verified the inhibitory effects of 4 anti-TCTP mAbs on dTCTP-induced secretion of IL-8 in BEAS-2B cells. To investigate the anti-inflammatory effect of anti-TCTP mAbs on allergic airway inflammation, we treated OVA-sensitized mice with anti-TCTP mAbs before OVA challenge. The changes in bronchoalveolar lavage fluid (BALF) cells, IL-4, IL-5, and IL-13 levels in both BALF and lung homogenates, plasma levels of OVA-specific IgE, and lung tissues were analyzed. We found that JEW-M449 anti-TCTP mAb bound to the flexible loop of TCTP and significantly inhibited dTCTP-induced IL-8 release, making it the most effective inhibitor in our study. We also found that treatment with JEW-M449 significantly reduced the infiltration of inflammatory cells and suppressed the OVA-induced upregulation of type 2 cytokines in both BALF and lung homogenates in a dose-dependent manner. In addition, JEW-M449 significantly attenuated the degree of goblet cell hyperplasia and mucus secretion. Our results demonstrate that specific targeting of the flexible loop of TCTP is a potent strategy for treating airway inflammatory diseases.


Assuntos
Asma , Hipersensibilidade , Animais , Camundongos , Interleucina-8/farmacologia , Proteína Tumoral 1 Controlada por Tradução , Asma/metabolismo , Hipersensibilidade/tratamento farmacológico , Pulmão , Inflamação/metabolismo , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Ovalbumina/farmacologia , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
7.
Clin Psychopharmacol Neurosci ; 21(4): 650-664, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37859438

RESUMO

Biomarkers of suicidal behavior (SB), particularly peripheral biomarkers, may aid in the development of preventive and intervention strategies. The peripheral biomarkers of SB should be easily accessible, cost-effective, and minimally invasive. To identify peripheral biomarkers of SB, we summarized the current knowledge related to SB biomarkers with a focus on suicidal outcomes (suicidal ideation [SI], suicide risk [SR], suicide attempt [SA], and suicide death [SD]), measured site (center or periphery), and study design (cross-sectional or longitudinal). We also evaluated the central findings to validate the findings of peripheral biomarkers of SB. We found reduced peripheral interleukin (IL)-2 levels in individuals with a recent SA, higher cerebrospinal fluid (CSF) IL-6 levels in patients with a current SR and future SD, higher CSF tumor necrosis factor-α levels for current and future SRs, higher high-sensitivity C-reactive protein levels and lower peripheral total cholesterol levels for recent SAs, lower peripheral 5-HT levels for present SR, and a lower folate level for future SR and SA within 1 year. Previous studies have shown inconsistent associations of low peripheral leptin levels with SR and recent SA; therefore, further study is required. Given the multiple determinants of SB and weak associations with single biological markers, combinations of potential biological markers rather than single markers may improve the screening, diagnosis, and prediction of SB.

8.
Psychiatry Res ; 327: 115345, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516039

RESUMO

A considerable proportion of individuals exposed to trauma experience chronic and persistent posttraumatic stress disorder (PTSD). However, the specific brain and clinical features that render trauma-exposed individuals more susceptible to enduring symptoms remain elusive. This study investigated 112 trauma-exposed participants who had been diagnosed with PTSD and 112 demographically-matched healthy controls. Trauma-exposed participants were classified into those with current PTSD (persistent PTSD, n = 78) and those without (remitted PTSD, n = 34). Cortical thickness analysis was performed to discern group-specific brain structural characteristics. Coping strategies and resilience levels, assessed as clinical attributes, were compared across the groups. The persistent PTSD group displayed cortical thinning in the superior frontal cortex (SFC), insula, superior temporal cortex, dorsolateral prefrontal cortex, superior parietal cortex, and precuneus, relative to the remitted PTSD and control groups. Cortical thinning in the SFC was associated with increased utilization of maladaptive coping strategies, while diminished thickness in the insula correlated with lower resilience levels among trauma-exposed individuals. These findings imply that cortical thinning in brain regions related to coping strategy and resilience plays a vital role in the persistence of PTSD symptoms.


Assuntos
Regulação Emocional , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Afinamento Cortical Cerebral , Encéfalo , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética
9.
PLoS One ; 18(7): e0287682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37437033

RESUMO

Childhood overweight/obesity has been associated with negative consequences related to brain function and may involve alterations in white matter pathways important for cognitive and emotional processing. Aerobic physical activity is a promising lifestyle factor that could restore white matter alterations. However, little is known about either regional white matter alterations in children with overweight/obesity or the effects of aerobic physical activity targeting the obesity-related brain alterations in children. Using a large-scale cross-sectional population-based dataset of US children aged 9 to 10 years (n = 8019), this study explored the associations between overweight/obesity and microstructure of limbic white matter tracts, and examined whether aerobic physical activity may reduce the overweight/obesity-related white matter alterations in children. The primary outcome measure was restriction spectrum imaging (RSI)-derived white matter microstructural integrity measures. The number of days in a week that children engaged in aerobic physical activity for at least 60 minutes per day was assessed. We found that females with overweight/obesity had lower measures of integrity of the fimbria-fornix, a major limbic-hippocampal white matter tract, than their lean peers, while this difference was not significant in males. We also found a positive relationship between the number of days of aerobic physical activity completed in a week and integrity measures of the fimbria-fornix in females with overweight/obesity. Our results provide cross-sectional evidence of sex-specific microstructural alteration in the fimbria-fornix in children with overweight/obesity and suggest that aerobic physical activity may play a role in reducing this alteration. Future work should examine the causal direction of the relationship between childhood overweight/obesity and brain alterations and evaluate potential interventions to validate the effects of aerobic physical activity on this relationship.


Assuntos
Fórnice , Obesidade Infantil , Criança , Feminino , Humanos , Masculino , Estudos Transversais , Exercício Físico/fisiologia , Fórnice/patologia , Fórnice/ultraestrutura , Obesidade Infantil/patologia , Obesidade Infantil/terapia , Leucoaraiose/prevenção & controle , Fatores Sexuais
10.
Exp Neurobiol ; 32(2): 91-101, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37164649

RESUMO

The FK506 binding protein 5 (FKBP5) is a co-chaperone that regulates the activity of the glucocorticoid receptor (GR) and has been reported to mediate stress resilience. This study aimed to determine the effects of Fkbp5 deletion on acute stress-induced recognition memory impairment and hippocampal GR signaling. Wild-type and Fkbp5-knockout mice were subjected to acute uncontrollable stress induced by restraint and electrical tail shock. First, we assessed the cognitive status of mice using a novel object recognition task. Next, we measured plasma corticosterone, GR levels, and the levels of GR phosphorylation at serine 211 in the hippocampus. Wild-type mice exhibited stress-induced memory impairments, whereas Fkbp5-knockout mice did not. Plasma corticosterone and GR levels did not differ between the non-stressed wild-type and Fkbp5-knockout mice, but the levels of phosphorylated GR were lower in Fkbp5-knockout mice than in wild-type mice. Wild-type and Fkbp5-knockout mice showed increased nuclear GR levels following stress, indicating GR translocation. However, cytosolic phosphorylated GR levels were lower in the hippocampi of Fkbp5-knockout mice following stress than in those of wild-type mice. These results suggest that FKBP5 deficiency increases resilience to acute stress by altering GR signaling.

11.
Exp Neurobiol ; 32(2): 110-118, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37164651

RESUMO

Complex regional pain syndrome (CRPS) is a chronic neuropathic pain disorder. Pain catastrophizing, characterized by magnification, rumination, and helplessness, increases perceived pain intensity and mental distress in CRPS patients. As functional connectivity patterns in CRPS remain largely unknown, we aimed to investigate functional connectivity alterations in CRPS patients and their association with pain catastrophizing using a whole-brain analysis approach. Twenty-one patients with CRPS and 49 healthy controls were included in the study for clinical assessment and resting-state functional magnetic resonance imaging. Between-group differences in whole-brain functional connectivity were examined through a Network-based Statistics analysis. Associations between altered functional connectivity and the extent of pain catastrophizing were also assessed in CRPS patients. Relative to healthy controls, CRPS patients showed higher levels of functional connectivity in the bilateral somatosensory subnetworks (components 1~2), but lower functional connectivity within the prefronto-posterior cingulate (component 3), prefrontal (component 4), prefronto-parietal (component 5), and thalamo-anterior cingulate (component 6) subnetworks (p<0.05, family-wise error corrected). Higher levels of functional connectivity in components 1~2 (ß=0.45, p=0.04) and lower levels of functional connectivity in components 3~6 (ß=-0.49, p=0.047) were significantly correlated with higher levels of pain catastrophizing in CRPS patients. Higher functional connectivity in the somatosensory subnetworks implicating exaggerated pain perception and lower functional connectivity in the prefronto-parieto-cingulo-thalamic subnetworks indicating impaired cognitive-affective pain processing may underlie pain catastrophizing in CRPS.

12.
Neuroimage Clin ; 38: 103440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37224606

RESUMO

BACKGROUND: Complex regional pain syndrome (CRPS) is characterized by continued amplification of pain intensity. Given the pivotal roles of the insula in the perception and interpretation of pain, we examined insular functional connectivity and its associations with clinical characteristics in patients with CRPS. METHODS: Twenty-one patients with CRPS and 49 healthy controls underwent resting-state functional magnetic resonance imaging. The seed-to-seed functional connectivity analysis was performed for the bilateral insulae and cognitive control regions including the dorsal anterior cingulate cortex (dACC) and bilateral dorsolateral prefrontal cortex (DLPFC) between the two groups. Correlations between altered functional connectivity and clinical characteristics were assessed in CRPS patients. RESULTS: CRPS patients exhibited lower functional connectivity within the bilateral anterior insulae, between the insular and cognitive control regions (the bilateral anterior/posterior insulae-dACC; the right posterior insula-left DLPFC), as compared with healthy controls at false discovery rate-corrected p < 0.05. In CRPS patients, pain severity was associated negatively with the left-right anterior insular functional connectivity (r = -0.49, p = 0.03), yet positively with the left anterior insula-dACC functional connectivity (r = 0.51, p = 0.02). CONCLUSIONS: CRPS patients showed lower functional connectivity both within the bilateral anterior insulae and between the insular and cognitive control regions. The current findings may suggest pivotal roles of the insula in dysfunctional pain processing of CRPS patients.


Assuntos
Síndromes da Dor Regional Complexa , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Síndromes da Dor Regional Complexa/diagnóstico por imagem , Síndromes da Dor Regional Complexa/patologia , Dor , Giro do Cíngulo/diagnóstico por imagem , Medição da Dor , Córtex Cerebral
13.
Mol Psychiatry ; 28(7): 2964-2974, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36854717

RESUMO

Trauma elicits various adaptive and maladaptive responses among all exposed people. There may be distinctively different patterns of adaptation/maladaptation or types according to neurobiological predisposition. The present study aims to dissect the heterogeneity of posttraumatic conditions in order to identify clinically meaningful subtypes in recently traumatized individuals and evaluate their neurobiological correlates and long-term prognosis. We implemented a data-driven classification approach in both discovery (n = 480) and replication (n = 220) datasets of trauma-exposed and trauma-unexposed individuals based on the clinical data across a wide range of assessments. Subtype-specific patterns of functional connectivity in higher-order cortical networks, longitudinal clinical outcomes, and changes in functional connectivity were also evaluated. We identified four distinct and replicable subtypes for trauma-exposed individuals according to posttraumatic stress symptoms. Each subtype was distinct in clinical characteristics, brain functional organization, and long-term trajectories for posttraumatic symptoms. These findings help enhance current understanding of mechanisms underlying the human-specific heterogeneous responses to trauma. Furthermore, this study contributes data towards the development of improved interventions, including targeting of subtype-specific characteristics, for trauma-exposed individuals and those with PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Encéfalo
14.
Eur Arch Psychiatry Clin Neurosci ; 273(1): 99-111, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35951113

RESUMO

Research integrating molecular and imaging data provides important insights into how the genetic profile associated with dopamine signaling influences inter-individual differences in brain functions. However, the effects of genetic variations in dopamine signaling on the heterogeneity of brain changes induced by repetitive transcranial magnetic stimulation (rTMS) still remain unclear. The current study examined the composite effects of genetic variations in dopamine-related genes on rTMS-induced brain responses in terms of the functional network connectivity and working memory performance. Healthy individuals (n = 30) participated in a randomized, double-blind, sham-controlled study with a crossover design of five consecutive days where active rTMS or sham stimulation sessions were administered over the left dorsolateral prefrontal cortex (DLPFC) of the brain. Participants were mostly women (n = 29) and genotyped for polymorphisms in the catechol-O-methyltransferase and D2 dopamine receptor genes and categorized according to their genetic composite scores: high vs. low dopamine signaling groups. Pre- and post-intervention data of resting-state functional magnetic resonance imaging and working memory performance were obtained from 27 individuals with active rTMS and 30 with sham stimulation sessions. The mean functional connectivity within the resting-state networks centered on the DLPFC increased in the high dopamine signaling group. Working memory performance also improved with rTMS in the high dopamine signaling group compared to that in the low dopamine signaling group. The present results suggest that genetic predisposition to higher dopamine signaling may be a promising neurobiological predictor for rTMS effects on cognitive enhancement.Trial registration: ClinicalTrials.gov (NCT02932085).


Assuntos
Catecol O-Metiltransferase , Estimulação Magnética Transcraniana , Humanos , Feminino , Masculino , Estimulação Magnética Transcraniana/métodos , Dopamina , Perfil Genético , Córtex Pré-Frontal/fisiologia , Encéfalo , Imageamento por Ressonância Magnética
15.
Exp Clin Psychopharmacol ; 31(1): 248-262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35201831

RESUMO

Cannabis has been widely used medically and recreationally for centuries. With a renewed interest in the therapeutic use of cannabinoids, which are active components of Cannabis sativa, it has become important to understand the cannabinoids' neurobiological mechanisms related to both therapeutic and harmful effects. This review summarizes the effects of two major cannabinoids, delta-9-tetrahydrocannabinol and cannabidiol, on brain metabolites. We focus on human studies applying ¹H-magnetic resonance spectroscopy (MRS) and animal studies using more invasive and direct methods to measure brain metabolites associated with glutamatergic neurotransmission or glial and neuronal functions. Although studies are limited in number, current evidence suggests that two major cannabinoids, which are thought to have differential effects on the brain, may alter the brain metabolite levels in distinct ways from each other. Potential limitations of present studies of cannabinoids on brain metabolites and suggestions regarding future studies are also discussed. We believe that issues clarified in this review may contribute to the design of future studies of cannabinoids on brain metabolites. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Animais , Humanos , Canabinoides/uso terapêutico , Canabidiol/farmacologia , Cannabis/química , Encéfalo , Dronabinol/farmacologia
16.
Psychol Med ; 53(9): 3805-3816, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35440353

RESUMO

BACKGROUND: The adolescent brain may be susceptible to the influences of illicit drug use. While compensatory network reorganization is a unique developmental characteristic that may restore several brain disorders, its association with methamphetamine (MA) use-induced damage during adolescence is unclear. METHODS: Using independent component (IC) analysis on structural magnetic resonance imaging data, spatially ICs described as morphometric networks were extracted to examine the effects of MA use on gray matter (GM) volumes and network module connectivity in adolescents (51 MA users v. 60 controls) and adults (54 MA users v. 60 controls). RESULTS: MA use was related to significant GM volume reductions in the default mode, cognitive control, salience, limbic, sensory and visual network modules in adolescents. GM volumes were also reduced in the limbic and visual network modules of the adult MA group as compared to the adult control group. Differential patterns of structural connectivity between the basal ganglia (BG) and network modules were found between the adolescent and adult MA groups. Specifically, adult MA users exhibited significantly reduced connectivity of the BG with the default network modules compared to control adults, while adolescent MA users, despite the greater extent of network GM volume reductions, did not show alterations in network connectivity relative to control adolescents. CONCLUSIONS: Our findings suggest the potential of compensatory network reorganization in adolescent brains in response to MA use. The developmental characteristic to compensate for MA-induced brain damage can be considered as an age-specific therapeutic target for adolescent MA users.


Assuntos
Encéfalo , Metanfetamina , Adulto , Humanos , Adolescente , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Mapeamento Encefálico/métodos , Gânglios da Base , Córtex Cerebral , Imageamento por Ressonância Magnética , Metanfetamina/farmacologia
17.
J Neurosci Res ; 100(6): 1321-1330, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35240720

RESUMO

Loss of olfaction, or anosmia, frequently accompanies emotional dysfunctions, partly due to the overlapping brain regions between the olfactory and emotional processing centers. Here, we investigated whether anosmia was associated with gray matter volume alterations at a network level, and whether these alterations were related to the olfactory-specific quality of life (QOL) and depressive symptoms. Structural brain magnetic resonance imaging was acquired in 22 individuals with postinfectious or idiopathic anosmia (the anosmia group) and 30 age- and sex-matched controls (the control group). Using independent component analysis on the gray matter volumes, we identified 10 morphometric networks. The gray matter volumes of these networks were compared between the two groups. Olfactory-specific QOL and depressive symptoms were assessed by self-report questionnaires and clinician-administered interviews, respectively. The anosmia group showed lower gray matter volumes in the hippocampus-amygdala and the precuneus networks, relative to the control group. Lower gray matter volumes in the hippocampus-amygdala network were also linearly associated with lower olfactory-specific QOL and higher depressive symptom scores. These findings suggest a close relationship between anosmia and gray matter volume alterations in the emotional brain networks, albeit without determined causal relations.


Assuntos
Substância Cinzenta , Qualidade de Vida , Adulto , Anosmia , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética/métodos
18.
Eur J Neurosci ; 54(10): 7550-7559, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34687097

RESUMO

Growing evidence indicates that type 2 diabetes mellitus (T2DM)-related cognitive dysfunction may develop in the early stage of the disease and is often accompanied by hippocampal structural alterations. In the current study, we investigated volume and shape alterations of the hippocampus at a subregional level in patients with T2DM. With the use of high-resolution brain structural images that were obtained from 30 T2DM patients with less than 5 years of disease duration and 30 healthy individuals, volumetric and shape analyses were performed. We also assessed the relationship between T2DM-related hippocampal structural alterations and performance on verbal fluency. In volumetric analysis, total hippocampal volume was smaller in the T2DM group, relative to the control group. At a subregional level, T2DM patients showed significant inward deformation and volume reduction of the right dentate gyrus and cornu ammonis 2/3 subregions as compared with healthy individuals. In particular, T2DM patients with lower performance on verbal fluency had smaller right dentate gyrus volumes relative to those with higher performance. These findings suggest that the hippocampus may undergo atrophy at a subregional level even in the early stage of T2DM, and this subregion-specific atrophy may be associated with reduced performance on verbal fluency.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Atrofia/patologia , Diabetes Mellitus Tipo 2/complicações , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética
19.
J Psychiatr Res ; 143: 215-221, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34507102

RESUMO

BACKGROUND: Cytidine-5'-diphosphate choline (CDP-choline) has been suggested to exert neuroprotective and neuroreparative effects and may be beneficial for patients with stimulant dependence. This randomized, double-blind, placebo-controlled study in methamphetamine (MA) dependence investigated effects of CDP-choline on the brain structures and their associations with craving and MA use. METHODS: MA users (n = 44) were randomized to receive 2 g/day of CDP-choline (n = 22) or placebo (n = 22) for 8 weeks. Patients underwent brain magnetic resonance imaging (MRI) at baseline and 8-week follow-up. Healthy individuals (n = 27) were also examined using brain MRI at the same interval. Voxel-based morphometry analysis was conducted to examine changes in gray matter (GM) volumes and their associations with craving and MA use. RESULTS: Craving for MA was significantly reduced after the 8 week-treatment with CDP-choline (p = 0.01), but not with the placebo treatment (p = 0.10). There was no significant difference in the total number of MA-negative urine samples between the two groups (p = 0.19). With CDP-choline treatment, GM volumes in the left middle frontal gyrus (p = 0.001), right hippocampus (p = 0.009), and left precuneus (p = 0.001) were significantly increased compared to the placebo and control groups. Increased GM volumes in the left middle frontal gyrus with CDP-choline treatment were associated with reduced craving for MA (Spearman's ρ = -0.56, p = 0.03). In addition, the right hippocampal volume increases were positively associated with the total number of MA-negative urine results in the CDP-choline group (Spearman's ρ = 0.67, p = 0.006). CONCLUSION: Our findings suggest that CDP-choline may increase GM volumes of MA-dependent patients, which may be related to decreases in MA use and craving.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Metanfetamina , Citidina , Citidina Difosfato Colina , Difosfatos , Substância Cinzenta/diagnóstico por imagem , Humanos
20.
Front Psychol ; 12: 569113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927662

RESUMO

Computerized relaxation training has been suggested as an effective and easily accessible intervention for individuals with psychological distress. To better elucidate the neural mechanism that underpins the effects of relaxation training, we investigated whether a 10-session computerized relaxation training program changed prefrontal gamma-aminobutyric acid (GABA) levels and cerebral blood flow (CBF) in women with psychological distress. We specifically focused on women since they were reported to be more vulnerable to develop stress-related disorders than men. Nineteen women with psychological distress but without a diagnosis of psychiatric disorders received the 10-day computerized relaxation training program that consisted of 30-min cognitive-relaxation training and 10-min breathing-relaxation training per day. At baseline and post-intervention, perceived stress levels, anxiety, fatigue, and sleep quality were assessed by self-report questionnaires. Brain magnetic resonance spectroscopy and arterial spin labeling scans were also performed before and after the intervention to evaluate GABA levels and relative CBF in the prefrontal region. Levels of perceived stress (t = 4.02, P < 0.001), anxiety (z = 2.33, P = 0.02), fatigue (t = 3.35, P = 0.004), and sleep quality (t = 4.14, P < 0.001) improved following 10 sessions of computerized relaxation training, resulting in a significant relief in composite scores of stress-related symptoms (t = -5.25, P < 0.001). The prefrontal GABA levels decreased (t = 2.53, P = 0.02), while relative CBF increased (t = -3.32, P = 0.004) after the intervention. In addition, a greater increase in relative prefrontal CBF was associated with better composite scores of stress-related symptoms following the intervention (t = 2.22, P = 0.04). The current findings suggest that computerized relaxation training may improve stress-related symptoms through modulating the prefrontal GABA levels and CBF in women with psychological distress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA