RESUMO
A series of Mn(I), Fe(II), and Co(II) complexes with PNH ligands bearing secondary amine functionality were prepared and tested in the catalytic transfer hydrogenation of nitriles using ammonia borane as a hydrogen source. Among all tested complexes, a tetracoordinate Fe(II) bromide, (PNH)FeBr2, proved the most effective, representing a rare example of a highly active iron-based catalytic system for transfer hydrogenation reactions beyond carbonyl compounds and the first example of the iron catalyst for the transfer hydrogenation of nitriles to the corresponding primary amines. Mechanistic studies point out a metal-ligand cooperative mechanism enabled by the secondary amine moiety of the PNH ligand.
RESUMO
A convenient design strategy opens access to neutral open-shell mixed-valence species via the redox transformation of charged stable precursors, i.e., the spiro-fused borate anions. We have implemented this strategy for the synthesis of the first neutral mixed-valence diradical: two neutral mixed-valence radical fragments were assembled via a twisted biphenyl bridge. The diradical is a crystalline solid obtained in almost quantitative yield by using a facile synthetic procedure. It is stable at room temperature in the triplet ground state with a very small singlet/triplet gap. This metal-free diradical can reversibly form five redox states. The diradical exhibits an intense IVCT band in the NIR region and can be assigned as a Class 2 Robin-Day MV (mixed valence) system with weakly interacting redox centers. Computations suggest that this diradical finds itself in a unique tug-of-war between two electron delocalization patterns, Kekulé and non-Kekulé, which gives rise to two geometric isomers that are close in energy but drastically different in spin distribution and polarity. Such bistable spin-systems should be intrinsically switchable and promising for the design of functional spin devices. The scope and limitations of the new redox-strategy for the neutral MV radicals were also tested on other types of spiro-fused borates, revealing structural factors responsible for the evolution from transient to persistent and then to stable radicals.
RESUMO
Nonsymmetric diarylethenes with an additional "stiff" cyclohexenol ring undergo various types of tandem transformations launched by light-induced 6π-photocyclization. Among these, there are two novel reactions (formal [1,3]-H migration and complete aromatization to an anthracene derivative) as well as photorearrangement and formal methane elimination. This diverse reactivity demonstrates the great potential of semi-stiff-diarylethenes in synthetic photochemistry.
RESUMO
An umpolung strategy was used for the preparation of highly functionalized 3-pyrrolin-2-ones. This approach involves dearomative double chlorination of 1H-pyrroles to form highly reactive dichloro-substituted 2H-pyrroles. The resulting intermediate reacts selectively with wet alcohols to form the corresponding alkoxy-substituted 3-pyrrolin-2-ones via double nucleophilic substitution in up to 99% yield. The subsequent reaction with different N-, O-, and S-nucleophiles opens access to highly functionalized pyrrolinones bearing additional functionality. The overall outcome of the reported sequence is step-by-step nucleophilic modification of pyrroles with three different nucleophiles. All steps were found to be highly efficient and 100% regioselective. This transformation proceeds under mild conditions and does not require any catalyst to give final products in very high yields. The obtained experimental results are in perfect agreement with the data obtained by theoretical investigation of these reactions.
RESUMO
The impact of substituents at the 4- and 7-positions of 1,10-phenanthroline-2,9-dicarboxamides on the photophysical properties of the ligands and their coordination compounds with the lanthanide triad-europium, gadolinium, and terbium-was analyzed. This study demonstrates how modification of the electronic nature of ligands through the incorporation of diverse functional groups affects the luminescence properties of their complexes. The introduction of various substituents leads to the appearance of intra-ligand or ligand-to-ligand charge transfer (CT) states. The highest luminescence efficiency was observed for LH·Eu(NO3)3 (Qin = 54.1% and QL = 9.6%), suggesting strong luminescence quenching of the CT state. It was found that a relatively low ΔE (â¼3000 cm-1) supports direct energy transfer from S1 to T1 bypassing the CT state, even though it is outside Reinhoudt's optimal range. The introduction of fluorines leads to the strongest luminescence quenching among all the substituents.
RESUMO
An efficient protocol was developed for the synthesis of highly functionalized 2H-pyrroles. This synthetic approach involves the in situ generation of highly reactive 2,5-dichloro-substituted 2H-pyrroles through dearomative chlorination of the corresponding 1H-pyrroles. The resulting reaction mixture is then treated with various amines, leading to the formation of 2,5-diaminated 2H-pyrroles. Subsequent nucleophilic substitution of fluorine with different N-, O-, and S-nucleophiles allows us to introduce additional functionality into a 2H-pyrrole core. The overall outcome of this reaction sequence is the triple nucleophilic modification of pyrroles. All steps of the sequence were found to be highly efficient, regioselective in the preparation of desired di- and trisubstituted derivatives in up to 96% overall yield. In addition, the computational study of this reaction sequence was carried out using density functional theory (DFT). The results of calculations are in perfect agreement with experimental observations.
RESUMO
New noncentrosymmetric cerium(IV) iodate fluoride Rb2Ce(IO3)5F was prepared employing a hydrothermal technique. The compound crystallizes in the Cmc21 space group (#36) with cell parameters a = 11.1518(6) Å, b = 8.1187(4) Å and c = 17.1581(10) Å. The crystal structure of Rb2Ce(IO3)5F consists of layers composed of 8-vertex CeO7F and 7-vertex Rb(1)O7 and Rb(2)O6F polyhedra interconnected by I(2)O3 groups. These layers are stitched by trigonal pyramidal I(1)O3 and I(3)O3 groups into a 3D framework. Synthesized iodate fluoride is thermally stable in air up to 430 °C. According to DFT calculations, Rb2Ce(IO3)5F is a direct-gap semiconductor with a band gap of ca. 2.33 eV. This value is in good agreement with an estimated optical gap value of 2.35 eV. The important feature of Rb2Ce(IO3)5F is the ability to generate a second optical harmonic signal comparable to that of KH2PO4.
RESUMO
New nitrosonium manganese(II) nitrate, (NO)Mn6(NO3)13, has been synthesized and structurally characterized. In the temperature range of 45-298 K, the crystal is hexagonal (centrosymmetric sp. gr. P63/m). Mn2+ ions are assembled into tubes along axis c with both NO3- filling and coating. The nitrosonium cation is located in the framework cavity and is disordered by a 3-fold axis. At the temperature TS1 = 190 K, a structural phase transition related to the libration of the intertube NO3 group and a small variation of Mn polyhedron is observed. Moreover, the anomalies in physical properties of (NO)Mn6(NO3)13 allow suggesting that ordering of NO+ units occurs at low temperatures. The antiferromagnetic ordering in this compound is preceded by the formation of a short-range correlation regime at about 25 K and takes place in two steps at TN1 = 12.0 K and TN2 = 8.4 K.
RESUMO
Two novel derivatives of the C70 fullerene with 9- and 10-membered cage openings were obtained by means of oxidation and decarbonylation of C70(CF3)8. The major product, C70(O)(CF3)8O2, features a cleaved C-C bond transformed into two carbonyl functions plus an ether bridge. The second product, C69O(CF3)8O, has one of the carbonyls replaced with another ether bridge. We provide a DFT analysis of the possible formation pathways to give the oxidized compounds under the action of pyridine N-oxide.
RESUMO
A new family of phenanthroline ligands was prepared. Hydrolysis of 4,7-dihalogenated 1,10-phenanthroline-2,9-diamides in acidic media leads to the formation of the corresponding 4,7-oxygenated derivatives. These ligands can exist in different tautomeric forms. The tautomerism of 4,7-oxygenated phenanthroline diamides has been investigated using quantum chemical calculations. The unsymmetrical oxo-hydroxy tautomeric form was proved to be the most energetically advantageous according to the spectral data and X-ray analysis. It was shown that 4,7-difluoro derivatives undergo acid hydrolysis more easily when compared to 4,7-dichloro derivatives. The coordination chemistry of 4,7-oxygenated 1,10-phenanthroline-2,9-diamides toward some lanthanide nitrates was investigated. The structures of Ln-complexes thus formed were studied both in the solid state and in solution (XRD analysis and IR, NMR and UV spectroscopy). It was revealed that 4,7-oxygenated ligands adopt the dihydroxy tautomeric form upon coordination with lanthanide nitrates.
RESUMO
LnCl3(THF)3 (Ln = Y, La ÷ Nd, Sm ÷ Lu) readily react with the tridentate 1,3,5-trimethyl-1,3,5-triazacyclohexane (Me3tach) ligand to form mono- or binuclear lanthanide trichloride complexes, depending on the stoichiometry of the reaction and the ionic radius of the metal: mononuclear pseudosandwich [LnCl3(Me3tach)2], (Ln = Y, La ÷ Ho) or binuclear complexes [Ln2Cl6(Me3tach)3], or [LnCl3(Me3tach)(THF)]2 (Ln = Sm, Tb). Detailed analysis of the NMR data of [LnCl3(Me3tach)2] complexes with paramagnetic lanthanide ions showed that their structures remained unchanged in the toluene solution. A series of isomorphous complexes [LnCl3(Me3tach)(Py)2] (Ln = La, Sm, Tb, Er, Lu; Py = pyridine) have been obtained by the recrystallization of either mononuclear or binuclear complexes from pyridine. Complexes of terbium and europium ions with the Me3tach ligand exhibit relatively high quantum yields of metal-centered luminescence (0.39 and 0.32, respectively).
RESUMO
Ru(II) complexes with polypyridyl ligands (2,2'-bipyridine = bpy, 1,10-phenanthroline = phen) play a central role in the development of photocatalytic organic reactions. In this work, we synthesized four mixed-ligand [Ru(phen)(bpy)2]2+-type complexes (Ru-Pcat-A) bearing two phosphonate substituents P(O)(OH)(OR) (R = H, Et) attached to the phen core at positions 3,8 (Ru-3,8PH and Ru-3,8PHEt) and 4,7 (Ru-4,7PH and Ru-4,7PHEt) of the heterocycle in high yields (87-99%) and characterized them using spectral methods. Single crystal X-ray diffraction was employed to determine the coordination mode of the ditopic phen ligand in Ru-4,7PH. This complex exists as the neutral species and forms a 1D hydrogen-bonded framework in the crystals. The light absorption characteristics were found to be similar for all complexes prepared in this work. However, the emission maxima in aqueous solutions were significantly affected by the substitution of the heterocycle, ranging from 629 nm for Ru-4,7PH to 661 nm for Ru-3,8PHEt. The emission quantum yields in Ar-saturated deionized water showed a strong dependence on the substitution pattern of the phen ligand, with maximal values reaching approximately 0.11 for Ru-4,7PHEt and Ru-4,7PH, which is twice as high as that of the classical [Ru(bpy)3]2+ complex (Ru-bpy). The photocatalytic performance of Ru-Pcat-A was investigated using visible light photoredox catalytic transformations of tertiary amines. With Ru-Pcat-A, we achieved the phosphonylation of N-aryl-1,2,3,4-tetrahydroisoquinolines (THIQs) and cyanation of THIQs and N,N-dimethylaniline in methanol, while a mixture of nitromethane/methanol (1 : 1 v/v) proved to be the optimal solvent for conducting the nitromethylation of THIQs. In the majority of the studied reactions, Ru-4,7PHEt exhibited greater efficiency compared to Ru-bpy, and it could be easily separated from the products using water extraction and reused in the next catalytic cycle. We successfully performed seven consecutive nitromethylation and phosphonylation of N-phenyl-1,2,3,4-tetrahydroisoquinoline using the recycled homogeneous photoredox catalyst.
RESUMO
The search for new effective extractants is an important task for the management of high-level liquid waste (HLW) generated during the reprocessing of spent nuclear fuel. Here, we synthesized a series of diglycolamides with cyclic substituents for the first time. We disclosed their coordination with f-element nitrates [La(NO3)3 and UO2(NO3)2] by SC-XRD study and complexation properties toward Am(III), Ln(III), and U(VI) during solvent extraction from nitric acid solutions. Using dynamic nuclear magnetic resonance (NMR) and density functional theory (DFT) calculations, the importance of tautomerism in the extraction properties of diglycolamides was shown.
RESUMO
Single crystals of two new intermetallic phases Sm2Mn1-xGa6-yGey (x = 0.1-0.3, y = 0.6-1.0) and Sm4MnGa12-yGey (y = 3.0-3.5) were grown using a self-flux technique. According to single crystal X-ray diffraction data, Sm4MnGa12-yGey is characterised by the Y4PdGa12 structure type (a â¼ 8.65 Å; Im3Ìm), while Sm2Mn1-xGa6-yGey formally adopts the K2PtCl6 structure type (a â¼ 8.71 Å; Fm3Ìm). The general features of both compounds with rather similar crystal structures are represented by the alternation of empty and Mn-filled p-element octahedra, the order of which is determined by the Mn concentration. The diffraction data for Sm2Mn1-xGa6-yGey reveal a large concentration of Mn vacancies (x â¼ 0.3), which affects adjacent Ga/Ge atoms leading to their shift towards the vacancy. Both compounds demonstrate two ferromagnetic-like transitions and the presence of two interacting Mn and Sm magnetic sublattices. The Mn sublattice orders at TC1 of 143 K and 318 K, while the Sm one orders at lower temperatures at TC2 of 50 K and 280 K for Sm4MnGa8.6Ge3.4 and Sm2Mn0.74Ga5.1Ge0.9, respectively. The increase in Mn content not only increases the ordering temperatures, but also dramatically decreases the coercivity µ0HC from 230 mT to just 6.5 mT at 2 K. Despite the presence of two magnetically active sublattices in Sm2Mn0.74Ga5.1Ge0.9, the magnetic entropy change is quite low and only reaches 0.3 J kg-1 K-1 at T = 300 K and µ0H = 5 T, while the estimated relative cooling power (RCP) is about 36 J kg-1 at 5 T.
RESUMO
A highly efficient synthetic approach was developed for the synthesis of unsymmetrical 1,10-phenanthroline-2,9-diamides with two different substituents in the fourth and seventh positions of the phenanthroline core. The structures of these ligands were confirmed using various spectral methods including 2D-NMR and X-ray analysis. Quantum chemical calculations supported the presence of tautomeric forms of these ligands. Furthermore, it was discovered that these compounds exhibit polydentate ligand behavior toward lanthanide nitrates. The structural characteristics of the complexes formed between these ligands and lanthanide nitrates were investigated both in the solid state and in solution. To further understand the binding properties of these novel unsymmetrical ligands, the binding constants for potential complexes were quantitatively measured by using UV-vis spectrophotometric titration. This allowed for a comprehensive analysis of the binding affinity and stability of these complexes. Extraction experiments of f-elements were performed for symmetrical and unsymmetrical diamides. Overall, this study presents significant advancement in the synthesis and characterization of unsymmetrical 1,10-phenanthroline-2,9-diamides and provides valuable insights into their potential applications as polydentate ligands for lanthanide nitrates.
RESUMO
5-Arylpyrrolidine-2-carboxylates with an ortho-halogen substituent at 5-aryl and an electron-withdrawing group at the C4 position of the pyrrolidine ring were transformed into 1H-benzo[b]azepine-2-carboxylates under Cu(I) promotion and microwave activation. Reaction promoter copper(I) thiophene-2-carboxylate has been generated in situ in the reaction's environment from Cu2O and thiophene-2-carboxylic acid. Functionalized 1H-benzo[b]azepine-2-carboxylates were obtained in racemic and optically active forms in 67-89% yields. Subsequent stereoselective 1,3-dipolar cycloaddition and an Ullmann-type annulation/rearrangement cascade (UARC) ensure a synthetic route to oligomeric optically active benzazepine species with a well-defined 3D-structure.
RESUMO
There is incessant interest in the transfer of common chemical processes from organic solvents to water, which is vital for the development of bioinspired and green chemical technologies. Diarylethenes feature a rich photochemistry, including both irreversible and reversible reactions that are in demand in organic synthesis, materials chemistry, and photopharmacology. Herein, we introduce the first versatile class of diarylethenes, namely, potassium 2,3-diarylmaleates (DAMs), that show excellent solubility in water. DAMs obtained from highly available precursors feature a full spectrum of photoactivity in water and undergo irreversible reactions (oxidative cyclization or rearrangement) or reversible photocyclization (switching), depending on their structure. This finding paves a way towards wider application of diarylethenes in photopharmacology and bioinspired technologies that require aqueous media for photochemical reactions.
RESUMO
In this work, we have developed selective methods for the synthesis of quinoline-2-carboxylates and quinoline-3-carboxylates as well as (indolin-2-ylidene)acetates through copper-, silver-, or phosphine-catalyzed reaction of propiolates with 2'-amino-2,2,2-trifluoroacetophenones. The approaches proposed ensure synthesis of substituted quinoline carboxylates and (indolin-2-ylidene)acetates in good yields. Introduction of alkynones into the reaction with 2'-amino-2,2,2-trifluoroacetophenones gives acyl substituted derivatives in good yields.
RESUMO
The Barton-Zard reaction of ß-fluoro-ß-nitrostyrenes with ethyl α-isocyanoacetate was studied. The reaction was found to proceed in a highly chemoselective manner to form preferably 4-fluoropyrroles in up to 77% yield. The corresponding 4-nitrosubstituted pyrroles are formed as minor products of the reaction. The broad scope of ß-fluoro-ß-nitrostyrenes was demonstrated in the preparation of a variety of fluorinated pyrroles. The obtained experimental results are in perfect agreement with the data obtained by theoretical investigation of this reaction. The subsequent study of synthetic utility of monofluorinated pyrroles was performed to open a way for the development of a variety of functionalized pyrrole derivatives.
RESUMO
Derivatives of naphthalene-diimide (NDI) are among the most studied and popular organic semiconductors showing n-type conductivity. However, the structure and optoelectronic properties of crystalline NDIs N-functionalized with conjugated donors have not been investigated yet. In this study, a novel donor-acceptor compound NDI-Stb bearing one NDI core, as an acceptor, and two stilbene moieties covalently linked via imide positions of NDI, as a donor, was synthesized. A combined experimental and theoretical approach was applied to study the structure and properties of NDI-Stb molecules and its crystals. We found and explained why optical absorption and high-frequency Raman spectra are inherited from those of donor and acceptor moieties, but photoluminescence is determined by the properties of the whole molecule. We resolved the structure of NDI-Stb single crystals and found that strong intermolecular interactions operate along two directions, for which NDI cores stack either on similar cores or on stilbene moieties. These interactions cause suppression of dynamic disorder indicated by a weak low-frequency Raman signal and solid-state luminescence enhancement. Ambipolar charge transport was predicted, and electron transport was experimentally observed in NDI-Stb polycrystalline thin films. The results obtained highlight the potential of using NDIs N-functionalized with conjugated donor moieties in optoelectronic applications, and improve the understanding of structure-property relationships necessary for the rational design of novel donor-acceptor organic semiconductors.