Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402822, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837540

RESUMO

Covalent-organic framework (COF) membranes are increasingly used for many potential applications including ion separation, fuel cells, and ion batteries. It is of central importance to fundamentally and quantitatively understand ion transport in COF membranes. In this study, a series of COF membranes is designed with different densities and arrangements of functional groups and subsequently utilize molecular simulation to provide microscopic insights into ion transport in these membranes. The membrane with a single-sided layer exhibits the highest chloride ion (Cl-) conductivity of 77.2 mS cm-1 at 30 °C. Replacing the single-sided layer with a double-sided layer or changing layer arrangement leads to a decrease in Cl- conductivity up to 33% or 53%, respectively. It is revealed that the electrostatic repulsion between ions serves as a driving force to facilitate ion transport and the positions of functional groups determine the direction of electrostatic repulsion. Furthermore, the ordered pores generate concentrated ions and allow rapid ion transport. This study offers bottom-up inspiration on the design of new COF membranes with moderate density and proper arrangement of functional groups to achieve high ion conductivity.

2.
Mater Horiz ; 11(1): 141-150, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916392

RESUMO

Electrochemical hydrogen compression (EHC) is an emerging energy conversion technology. Proton exchange membranes (PEMs) with high proton conductivity and high mechanical strength are highly required to meet the practical requirements of EHC. Herein, ionic covalent organic frameworks (iCOFs) with tunable side chains were synthesized and introduced into the sulfonated poly (ether ether ketone) (SPEEK) matrix to fabricate hybrid PEMs. In our membranes, the rigid iCOFs afford ordered proton conduction channels, whereas the flexible side chains on iCOFs afford abundant proton conduction sites, adaptive hydrogen bonding networks, and high local density short hydrogen bonds for highly efficient proton transport. Moreover, the hydrogen bond interactions between the side chains on iCOFs and the SPEEK matrix enhance the mechanical stability of membranes. As a result, the hybrid PEM acquires an enhanced proton conductivity of 540.4 mS cm-1 (80 °C, 100%RH), a high mechanical strength of 120.41 MPa, and a superior performance (2.3 MPa at 30 °C, 100%RH) in EHC applications.

3.
J Am Chem Soc ; 145(51): 27984-27992, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38100046

RESUMO

Anion exchange membranes with high anion conductivity are highly desired for electrochemical applications. Increasing ion exchange capacity is a straightforward approach to enhancing anion conductivity but faces a challenge in dimensional stability. Herein, we report the design and preparation of three kinds of isoreticular covalent organic framework (COF) membranes bearing tunable quaternary ammonium group densities as anion conductors. Therein, the cationic groups are integrated into the backbones by flexible ether-bonded alkyl side chains. The highly quaternary ammonium-group-functionalized building units endow COF membranes with abundant cationic groups homogeneously distributed in the ordered channels. The flexible side chains alleviate electrostatic repulsion and steric hindrance caused by large cationic groups, ensuring a tight interlayer stacking and multiple interactions. As a result, our COF membranes achieve a high ion exchange capacity and exceptional dimensional stability simultaneously. Furthermore, the effect of the ionic group density on the ion conductivity in rigid COF channels is systematically explored. Experiments and simulations reveal that the ionic group concentration and side chain mobility jointly determine the ion transport behavior, resulting in the abnormal phenomenon that the anion conductivity is not positively correlated to the ionic group density. The optimal COF membrane achieves the ever-reported highest hydroxide ion conductivity over 300 mS cm-1 at 80 °C and 100% RH. This study offers insightful guidelines on the rational design and preparation of high-performance anion conductors.

4.
Nat Commun ; 14(1): 5926, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739946

RESUMO

3D ionic covalent organic framework (COF) membranes, which are envisioned to be able to break the trade-off between ion conductivity and ion selectivity, are waiting for exploitation. Herein, we report the fabrication of a 3D sulfonic acid-functionalized COF membrane (3D SCOF) for efficient and selective ion transport, using dual acid-mediated interfacial polymerization strategy. The 3D SCOF membranes possess highly interconnected ion transport channels, ultramicroporous pore sizes (0.97 nm), and abundant sulfonate groups (with a high ion exchange capacity of 4.1 mmol g-1), leading to high proton conductivity of 843 mS cm-1 at 90 °C. When utilized in osmotic energy conversion, a high power density of 21.2 W m-2, and a remarkable selectivity of 0.976 and thus an exceptional energy conversion efficiency of 45.3% are simultaneously achieved. This work provides an alternative approach to 3D ionic COF membranes and promotes the applications of 3D COFs in ion transport and separation.

5.
Mater Horiz ; 10(11): 5016-5021, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37642511

RESUMO

Covalent organic framework (COF) materials have been considered as disruptive membrane materials for gas separation. The dominant one-step method for COF nanosheet synthesis often suffers from coupling among polymerization, assembly and crystallization processes. Herein, we propose a two-step method comprising a framework assembly step and functional group switching step to synthesize COF nanosheets and the corresponding COF membranes. In the first step, the pristine COF-316 nanosheets bearing cyano groups are prepared via interfacial polymerization. In the second step, the cyano groups in COF-316 nanosheets were switched into amidoxime groups or carboxyl groups. Through the vacuum-assisted self-assembly method, the COF nanosheets were fabricated into membranes with a thickness below 100 nm. Featuring numerous mass transport channels and homogeneous distribution of functional groups, the amidoxime-modified COF-316 membrane demonstrated excellent separation performance, with a permeance above 500 GPU and a CO2/N2 selectivity above 50. The two-step method may inspire the rational design and fabrication of organic framework membranes.

6.
Adv Mater ; 35(16): e2211004, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36683382

RESUMO

Side-chain engineering of covalent organic frameworks as advanced ion conductors is a critical issue to be explored. Herein, ionic covalent organic framework membranes (iCOFMs) with spacer-engineered ionic channel are de novo designed and prepared. The ionic channels are decorated with side chains comprising spacers having different carbon chain lengths and the -SO3 H groups at the end. Attributed to the synergistic contribution from the spacers and the -SO3 H groups, the iCOFM with moderate-length spacer exhibit the highest through-plane proton conductivity of 889 mS cm-1 at 90 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA