Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(6): 112609, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37289586

RESUMO

We applied raw human liver microsome lysate to a holey carbon grid and used cryo-electron microscopy (cryo-EM) to define its composition. From this sample we identified and simultaneously determined high-resolution structural information for ten unique human liver enzymes involved in diverse cellular processes. Notably, we determined the structure of the endoplasmic bifunctional protein H6PD, where the N- and C-terminal domains independently possess glucose-6-phosphate dehydrogenase and 6-phosphogluconolactonase enzymatic activity, respectively. We also obtained the structure of heterodimeric human GANAB, an ER glycoprotein quality-control machinery that contains a catalytic α subunit and a noncatalytic ß subunit. In addition, we observed a decameric peroxidase, PRDX4, which directly contacts a disulfide isomerase-related protein, ERp46. Structural data suggest that several glycosylations, bound endogenous compounds, and ions associate with these human liver enzymes. These results highlight the importance of cryo-EM in facilitating the elucidation of human organ proteomics at the atomic level.


Assuntos
Retículo Endoplasmático , Isomerases de Dissulfetos de Proteínas , Humanos , Retículo Endoplasmático/metabolismo , Microscopia Crioeletrônica , Isomerases de Dissulfetos de Proteínas/metabolismo , Domínio Catalítico , Fígado/metabolismo
2.
Life Sci Alliance ; 6(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36450445

RESUMO

The ability to investigate tissues and organs through an integrated systems biology approach has been thought to be unobtainable in the field of structural biology, where the techniques mainly focus on a particular biomacromolecule of interest. Here we report the use of cryo-electron microscopy (cryo-EM) to define the composition of a raw human kidney microsomal lysate. We simultaneously identify and solve cryo-EM structures of four distinct kidney enzymes whose functions have been linked to protein biosynthesis and quality control, biosynthesis of retinoic acid, gluconeogenesis and glycolysis, and the regulation and metabolism of amino acids. Interestingly, all four of these enzymes are directly linked to cellular processes that, when disrupted, can contribute to the onset and progression of diabetes. This work underscores the potential of cryo-EM to facilitate tissue and organ proteomics at the atomic level.


Assuntos
Rim , Microssomos , Humanos , Microscopia Crioeletrônica , Aminoácidos , Glicólise
3.
Sci Adv ; 8(43): eabq0952, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306358

RESUMO

The Na-K-2Cl cotransporter-1 (NKCC1) is an electroneutral Na+-dependent transporter responsible for simultaneously translocating Na+, K+, and Cl- ions into cells. In human tissue, NKCC1 plays a critical role in regulating cytoplasmic volume, fluid intake, chloride homeostasis, and cell polarity. Here, we report four structures of human NKCC1 (hNKCC1), both in the absence and presence of loop diuretic (bumetanide or furosemide), using single-particle cryo-electron microscopy. These structures allow us to directly observe various novel conformations of the hNKCC1 dimer. They also reveal two drug-binding sites located at the transmembrane and cytosolic carboxyl-terminal domains, respectively. Together, our findings enable us to delineate an inhibition mechanism that involves a coupled movement between the cytosolic and transmembrane domains of hNKCC1.

4.
Microbiol Spectr ; 10(5): e0299022, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36121287

RESUMO

Bacterial efflux pumps in the resistance-nodulation-cell division (RND) family of Gram-negative bacteria contribute significantly to the development of antimicrobial resistance by many pathogens. In this study, we selected the MtrD transporter protein of Neisseria gonorrhoeae as it is the sole RND pump possessed by this strictly human pathogen and can export multiple antimicrobials, including antibiotics, bile salts, detergents, dyes, and antimicrobial peptides. Using knowledge from our previously published structures of MtrD in the presence or absence of bound antibiotics as a model and the known ability of MtrCDE to export cationic antimicrobial peptides, we hypothesized that cationic peptides could be accommodated within MtrD binding sites. Furthermore, we thought that MtrD-bound peptides lacking antibacterial action could sensitize bacteria to an antibiotic normally exported by the MtrCDE efflux pump or other similar RND-type pumps possessed by different Gram-negative bacteria. We now report the identification of a novel nonantimicrobial cyclic cationic antimicrobial peptide, which we termed CASP (cationic antibiotic-sensitizing peptide). By single-particle cryo-electron microscopy, we found that CASP binds within the periplasmic cleft region of MtrD using overlapping and distinct amino acid contact sites that interact with another cyclic peptide (colistin) or a linear human cationic antimicrobial peptide derived from human LL-37. While CASP could not sensitize Neisseria gonorrhoeae to an antibiotic (novobiocin) that is a substrate for RND pumps, it could do so against multiple Gram-negative, rod-shaped bacteria. We propose that CASP (or future derivatives) could serve as an adjuvant for the antibiotic treatment of certain Gram-negative infections previously thwarted by RND transporters. IMPORTANCE RND efflux pumps can export numerous antimicrobials that enter Gram-negative bacteria, and their action can reduce the efficacy of antibiotics and provide decreased susceptibility to various host antimicrobials. Here, we identified a cationic antibiotic-sensitizing peptide (CASP) that binds within the periplasmic cleft of an RND transporter protein (MtrD) produced by Neisseria gonorrhoeae. Surprisingly, CASP was able to render rod-shaped Gram-negative bacteria, but not gonococci, susceptible to an antibiotic that is a substrate for the gonococcal MtrCDE efflux pump. CASP (or its future derivatives) could be used as an adjuvant to treat infections for which RND efflux contributes to multidrug resistance.


Assuntos
Anti-Infecciosos , Colistina , Humanos , Colistina/metabolismo , Novobiocina/metabolismo , Microscopia Crioeletrônica , Detergentes/metabolismo , Detergentes/farmacologia , Proteínas de Bactérias/genética , Neisseria gonorrhoeae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Divisão Celular , Aminoácidos/metabolismo , Ácidos e Sais Biliares/metabolismo , Corantes/metabolismo , Corantes/farmacologia , Farmacorresistência Bacteriana Múltipla
7.
PLoS Biol ; 19(8): e3001370, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383749

RESUMO

The mycobacterial membrane protein large 3 (MmpL3) transporter is essential and required for shuttling the lipid trehalose monomycolate (TMM), a precursor of mycolic acid (MA)-containing trehalose dimycolate (TDM) and mycolyl arabinogalactan peptidoglycan (mAGP), in Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium smegmatis. However, the mechanism that MmpL3 uses to facilitate the transport of fatty acids and lipidic elements to the mycobacterial cell wall remains elusive. Here, we report 7 structures of the M. smegmatis MmpL3 transporter in its unbound state and in complex with trehalose 6-decanoate (T6D) or TMM using single-particle cryo-electron microscopy (cryo-EM) and X-ray crystallography. Combined with calculated results from molecular dynamics (MD) and target MD simulations, we reveal a lipid transport mechanism that involves a coupled movement of the periplasmic domain and transmembrane helices of the MmpL3 transporter that facilitates the shuttling of lipids to the mycobacterial cell wall.


Assuntos
Proteínas de Bactérias/metabolismo , Fatores Corda/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Decanoatos/metabolismo , Escherichia coli , Proteínas de Membrana Transportadoras/ultraestrutura , Simulação de Dinâmica Molecular , Mycobacterium smegmatis/ultraestrutura , Trealose/metabolismo
8.
mBio ; 12(2)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33820823

RESUMO

Gram-negative bacteria utilize the resistance-nodulation-cell division (RND) superfamily of efflux pumps to expel a variety of toxic compounds from the cell. The Escherichia coli CusA membrane protein, which recognizes and extrudes biocidal Cu(I) and Ag(I) ions, belongs to the heavy-metal efflux (HME) subfamily of RND efflux pumps. We here report four structures of the trimeric CusA heavy-metal efflux pump in the presence of Cu(I) using single-particle cryo-electron microscopy (cryo-EM). We discover that different CusA protomers within the trimer are able to bind Cu(I) ions simultaneously. Our structural data combined with molecular dynamics (MD) simulations allow us to propose a mechanism for ion transport where each CusA protomer functions independently within the trimer.IMPORTANCE The bacterial RND superfamily of efflux pumps mediate resistance to a variety of biocides, including Cu(I) and Ag(I) ions. Here we report four cryo-EM structures of the trimeric CusA pump in the presence of Cu(I). Combined with MD simulations, our data indicate that each CusA protomer within the trimer recognizes and extrudes Cu(I) independently.


Assuntos
Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Transporte de Íons , Proteínas de Membrana Transportadoras/química , Metais Pesados/metabolismo , Sítios de Ligação , Transporte Biológico , Cobre/metabolismo , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Proteínas de Membrana Transportadoras/ultraestrutura , Simulação de Dinâmica Molecular , Ligação Proteica , Prata/metabolismo
9.
EMBO Rep ; 22(3): e51628, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33471955

RESUMO

The intra-erythrocyte stage of P. falciparum relies primarily on glycolysis to generate adenosine triphosphate (ATP) and the energy required to support growth and reproduction. Lactic acid, a metabolic byproduct of glycolysis, is potentially toxic as it lowers the pH inside the parasite. Plasmodium falciparum formate-nitrite transporter (PfFNT), a 34-kDa transmembrane protein, has been identified as a novel drug target as it exports lactate from inside the parasite to the surrounding parasitophorous vacuole within the erythrocyte cytosol. The structure and detailed molecular mechanism of this membrane protein are not yet available. Here we present structures of PfFNT in the absence and presence of the functional inhibitor MMV007839 at resolutions of 2.56 Å and 2.78 Å using single-particle cryo-electron microscopy. Genetic analysis and transport assay indicate that PfFNT is able to transfer lactate across the membrane. Combined, our data suggest a stepwise displacement mechanism for substrate transport. The PfFNT membrane protein is capable of picking up lactate ions from the parasite's cytosol, converting them to lactic acids and then exporting these acids into the extracellular space.


Assuntos
Nitritos , Plasmodium falciparum , Microscopia Crioeletrônica , Formiatos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
10.
Nat Methods ; 18(1): 69-75, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408407

RESUMO

Single-particle cryo-electron microscopy (cryo-EM) has become a powerful technique in the field of structural biology. However, the inability to reliably produce pure, homogeneous membrane protein samples hampers the progress of their structural determination. Here, we develop a bottom-up iterative method, Build and Retrieve (BaR), that enables the identification and determination of cryo-EM structures of a variety of inner and outer membrane proteins, including membrane protein complexes of different sizes and dimensions, from a heterogeneous, impure protein sample. We also use the BaR methodology to elucidate structural information from Escherichia coli K12 crude membrane and raw lysate. The findings demonstrate that it is possible to solve high-resolution structures of a number of relatively small (<100 kDa) and less abundant (<10%) unidentified membrane proteins within a single, heterogeneous sample. Importantly, these results highlight the potential of cryo-EM for systems structural proteomics.


Assuntos
Proteínas de Bactérias/química , Burkholderia pseudomallei/metabolismo , Membrana Celular/metabolismo , Microscopia Crioeletrônica/métodos , Proteínas de Membrana/química , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Escherichia coli/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
11.
mBio ; 11(3)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457251

RESUMO

Neisseria gonorrhoeae is an obligate human pathogen and causative agent of the sexually transmitted infection (STI) gonorrhea. The most predominant and clinically important multidrug efflux system in N. gonorrhoeae is the multiple transferrable resistance (Mtr) pump, which mediates resistance to a number of different classes of structurally diverse antimicrobial agents, including clinically used antibiotics (e.g., ß-lactams and macrolides), dyes, detergents and host-derived antimicrobials (e.g., cationic antimicrobial peptides and bile salts). Recently, it has been found that gonococci bearing mosaic-like sequences within the mtrD gene can result in amino acid changes that increase the MtrD multidrug efflux pump activity, probably by influencing antimicrobial recognition and/or extrusion to elevate the level of antibiotic resistance. Here, we report drug-bound solution structures of the MtrD multidrug efflux pump carrying a mosaic-like sequence using single-particle cryo-electron microscopy, with the antibiotics bound deeply inside the periplasmic domain of the pump. Through this structural approach coupled with genetic studies, we identify critical amino acids that are important for drug resistance and propose a mechanism for proton translocation.IMPORTANCENeisseria gonorrhoeae has become a highly antimicrobial-resistant Gram-negative pathogen. Multidrug efflux is a major mechanism that N. gonorrhoeae uses to counteract the action of multiple classes of antibiotics. It appears that gonococci bearing mosaic-like sequences within the gene mtrD, encoding the most predominant and clinically important transporter of any gonococcal multidrug efflux pump, significantly elevate drug resistance and enhance transport function. Here, we report cryo-electron microscopy (EM) structures of N. gonorrhoeae MtrD carrying a mosaic-like sequence that allow us to understand the mechanism of drug recognition. Our work will ultimately inform structure-guided drug design for inhibiting these critical multidrug efflux pumps.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/ultraestrutura , Farmacorresistência Bacteriana Múltipla , Proteínas de Membrana Transportadoras/ultraestrutura , Neisseria gonorrhoeae/efeitos dos fármacos , Proteínas de Bactérias/química , Microscopia Crioeletrônica , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/química , Neisseria gonorrhoeae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA