RESUMO
Flowering in plants is pivotal for initiating and advancing reproductive processes, impacting regional adaptation and crop yield. Despite numerous cloned and identified flowering time genes, research in cotton remains sparse. This study identified GhSWEET42 as a key determinant of the flowering time in cotton, demonstrating that its heterologous expression in Arabidopsis accelerated flowering under LD conditions compared to WT. Transgenic plants exhibited upregulated expression of the flowering inducers AtFT, AtSOC1, AtGI, and AtFKF1, alongside downregulated expression of the repressors AtTSF, AtFLC, and AtRGL2, correlating with the earlier flowering phenotype. GhSWEET42 showed a constitutive expression pattern, with elevated levels in the leaves, petals, and flower buds, and was notably higher in early-maturing cotton varieties. Subcellular localization assays confirmed GhSWEET42's presence on the cell membrane. Transcriptome analysis between WT and GhSWEET42-overexpressing Arabidopsis plants revealed 2393 differentially expressed genes (DEGs), spanning 221 biological processes, 93 molecular functions, and 37 cellular components according to Gene Ontology (GO) enrichment analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis categorized the DEGs into metabolism and environmental information processing. These findings enhance the understanding of GhSWEET42's function and provide a foundation for elucidating the molecular mechanisms governing flowering time regulation in cotton.
RESUMO
Aging is a process that represents the accumulation of changes in organism overtime. In biological level, accumulations of molecular and cellular damage in aging lead to an increasing risk of diseases like sarcopenia. Sarcopenia reduces mobility, leads to fall-related injuries, and diminishes life quality. Thus, it is meaningful to find out novel therapeutic strategies for sarcopenia intervention that may help the elderly maintain their functional ability. Oxidative damage-induced dysfunctional mitochondria are considered as a culprit of muscle wasting during aging. Herein, we aimed to demonstrate whether myricanol (MY) protects aged mice against muscle wasting through alleviating oxidative damage in mitochondria and identify the direct protein target and its underlying mechanism. We discovered that MY protects aged mice against the loss of muscle mass and strength through scavenging reactive oxygen species accumulation to rebuild the redox homeostasis. Taking advantage of biophysical assays, peroxiredoxin 5 was discovered and validated as the direct target of MY. Through activating peroxiredoxin 5, MY reduced reactive oxygen species accumulation and damaged mitochondrial DNA in C2C12 myotubes. Our findings provide an insight for therapy against sarcopenia through alleviating oxidative damage-induced dysfunctional mitochondria by targeting peroxiredoxin 5, which may contribute an insight for healthy aging.
RESUMO
Abiotic stress significantly affects plant growth and has devastating effects on crop production. Drought stress is one of the main abiotic stressors. Actin is a major component of the cytoskeleton, and actin-depolymerizing factors (ADFs) are conserved actin-binding proteins in eukaryotes that play critical roles in plant responses to various stresses. In this study, we found that GmADF13, an ADF gene from the soybean Glycine max, showed drastic upregulation under drought stress. Subcellular localization experiments in tobacco epidermal cells and tobacco protoplasts showed that GmADF13 was localized in the nucleus and cytoplasm. We characterized its biological function in transgenic Arabidopsis and hairy root composite soybean plants. Arabidopsis plants transformed with GmADF13 displayed a more robust drought tolerance than wild-type plants, including having a higher seed germination rate, longer roots, and healthy leaves under drought conditions. Similarly, GmADF13-overexpressing (OE) soybean plants generated via the Agrobacterium rhizogenes-mediated transformation of the hairy roots showed an improved drought tolerance. Leaves from OE plants showed higher relative water, chlorophyll, and proline contents, had a higher antioxidant enzyme activity, and had decreased malondialdehyde, hydrogen peroxide, and superoxide anion levels compared to those of control plants. Furthermore, under drought stress, GmADF13 OE activated the transcription of several drought-stress-related genes, such as GmbZIP1, GmDREB1A, GmDREB2, GmWRKY13, and GmANK114. Thus, GmADF13 is a positive regulator of the drought stress response, and it may play an essential role in plant growth under drought stress conditions. These results provide new insights into the functional elucidation of soybean ADFs. They may be helpful for breeding new soybean cultivars with a strong drought tolerance and further understanding how ADFs help plants adapt to abiotic stress.
RESUMO
Hepatocellular carcinoma (HCC) poses a significant threat due to its highly aggressive and high recurrence characteristics, necessitating urgent advances in diagnostic and therapeutic approaches. Long non-coding RNAs exert vital roles in HCC tumorigenesis, however the mechanisms of their expression regulation and functions are not fully elucidated yet. Herein, we identify that a novel tumor suppressor 'lnc-PIK3R1' was significantly downregulated in HCC tissues, which was correlated with poor prognosis. Functionally, lnc-PIK3R1 played tumor suppressor roles to inhibit the proliferation and mobility of HCC cells, and to impede the distant implantation of xenograft in mice. Mechanistic studies revealed that lnc-PIK3R1 interacted with miR-1286 and alleviated the repression on GSK3B by miR-1286. Notably, pharmacological inhibition of GSK3ß compromised the tumor suppression effect by lnc-PIK3R1, confirming their functional relevance. Moreover, we identified that oncogenic YY1 acts as a specific transcriptional repressor to downregulate the expression of lnc-PIK3R1 in HCC. In summary, this study highlights the tumor-suppressive effect of lnc-PIK3R1, and provides new insights into the regulation of GSK3ß expression in HCC, which would benefit the development of innovative intervention strategies for HCC.
Assuntos
Carcinoma Hepatocelular , Classe Ia de Fosfatidilinositol 3-Quinase , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Fator de Transcrição YY1 , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Camundongos , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Progressão da Doença , Proliferação de Células/genética , Linhagem Celular Tumoral , Masculino , Camundongos Nus , FemininoRESUMO
Soft-tissue sarcomas (STS) emerges as formidable challenges in clinics due to the complex genetic heterogeneity, high rates of local recurrence and metastasis. Exploring specific targets and biomarkers would benefit the prognosis and treatment of STS. Here, we identified RCC1, a guanine-nucleotide exchange factor for Ran, as an oncogene and a potential intervention target in STS. Bioinformatics analysis indicated that RCC1 is highly expressed and correlated with poor prognosis in STS. Functional studies showed that RCC1 knockdown significantly inhibited the cell cycle transition, proliferation and migration of STS cells in vitro, and the growth of STS xenografts in mice. Mechanistically, we identified Skp2 as a downstream target of RCC1 in STS. Loss of RCC1 substantially diminished Skp2 abundance by compromising its protein stability, resulting in the upregulation of p27Kip1 and G1/S transition arrest. Specifically, RCC1 might facilitate the nucleo-cytoplasmic trafficking of Skp2 via direct interaction. As a result, the cytoplasmic retention of Skp2 would further protect it from ubiquitination and degradation. Notably, recovery of Skp2 expression largely reversed the phenotypes induced by RCC1 knockdown in STS cells. Collectively, this study unveils a novel RCC1-Skp2-p27Kip1 axis in STS oncogenesis, which holds promise for improving prognosis and treatment of this formidable malignancy.
Assuntos
Sarcoma , Animais , Humanos , Camundongos , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Sarcoma/genética , Sarcoma/patologia , Ubiquitinação , Regulação para CimaRESUMO
Background: The sentinel lymph node biopsy (SLNB) takes on a critical significance in breast cancer surgery since it is the gold standard for assessing axillary lymph node (ALN) metastasis and determining whether to perform axillary lymph node dissection (ALND). A bibliometric analysis is beneficial to visualize characteristics and hotspots in the field of sentinel lymph nodes (SLNs), and it is conducive to summarizing the important themes in the field to provide more insights into SLNs and facilitate the management of SLNs. Materials and methods: Search terms relating to SLNs were aggregated and searched in the Web of Science core collection database to identify the top 100 most cited articles. Bibliometric tools were employed to identify and analyze publications for annual article volume, authors, countries, institutions, keywords, as well as hotspot topics. Results: The period was from 1998 to 2018. The total number of citations ranged from 160 to 1925. LANCET ONCOLOGY and JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION were the top two journals in which the above articles were published. Giuliano, AE was the author with the highest number of articles in this field with 15. EUROPEAN INST ONCOL is the institution with the highest number of publications, with 35 articles. Hotspots include the following 4 topics, false-negative SLNs after neoadjuvant chemotherapy; prediction of metastatic SLNs; quality of life and postoperative complications; and lymphography of SLNs. Conclusion: This study applies bibliometric tools to analyze the most influential literature, the top 100 cited articles in the field of SLNB, to provide researchers and physicians with research priorities and hotspots.
RESUMO
In order to attain phosphor ceramics with a high Color-Rendering Index (CRI), samples with the composition of Y0.997-xRexCe0.003)3(Al0.9748 Mn2+0.024Cr3+0.0012)5O12(Rex = 0, Gd0.333, Gd0.666, Gd0.997, Tb0.333, Tb0.666, Tb0.997 and Lu0.997 were prepared by solid-state reaction and vacuum sintering, and exhibited potential for high-quality, solid-state lighting. Doping with Cr3+ and Mn2+ effectively enhanced the red component of Ce3+ spectra through the intense energy transfer from Ce3+ ions to Mn2+/Cr3+ ions. The crystal field splitting of [GdO8] and [TbO8] was more extensive than that of [YO8], causing a massive redshift in the Ce3+ emission peaks from 542 to 561 and 595 nm, while [LuO8] had an opposite effect and caused a blueshift with a peak position at 512 nm. White LED devices incorporating Ce/Mn/Cr: (Gd0.333Y0.664)3Al5O12 phosphor ceramic exhibited a high CRI of 83.97, highlighting the potential for enhancing the red-light component of white LED lighting.
RESUMO
To understand the responses of radial growth to climatic factors and the differences in ecological resilience to drought between a heliophilous species Larix principis-rupprechtii and a shade species Picea meyeri in mixed forests, we developed the tree-ring width chronologies of L. principis-rupprechtii and P. meyeri in three mixed forests based on the samples collected from Toudaogou of Saihanba in Hebei, Ningwu County and Kelan County in Shanxi Province. We analyzed the correlation between climatic factors and various chronologies and examined the differences in resistance (Rc), recovery (Rt), and resilience (Rs) of L. principis-rupprechtii and P. meyeri in response to drought stress. The results showed that the radial growth of L. principis-rupprechtii and P. meyeri was negatively correlated with the mean and maximum air temperature from May to July in three mixed forests, and was positively correlated with the Palmer drought index (PDSI) from May to September. Radial growth decline in trees due to drought stress was significantly different between the two species among the three sites, indicating different physiological and ecological regulation strategies. The resistance of P. meyeri was stronger than that of L. principis-rupprechtii at the three study sites, with stronger resilience and resilient elasticity of L. principis-rupprechtii than P. meyeri. As a result, P. meyeri exhibited greater drought resistance than L. principis-rupprechtii. Under global warming condition, L. principis-rupprechtii might be at greater risk of growth decline than P. meyeri in this region.
Assuntos
Larix , Picea , Secas , Resistência à Seca , Florestas , ÁrvoresRESUMO
The impact of multiple preparation protocols on properties and performance of modified biochar remains unclear. This study prepared layered double hydroxide (LDH)-based magnetic biochars (LMBCs) with different LDH loading rates (LLR), pyrolysis temperatures, and biomass sources to explore their performance-characterization relationships toward As(III) and Cd(II). Higher LLR and pyrolysis temperature enhanced LMBCs᾿ adsorption capacities by increasing specific surface area (SSA) and metal/O-containing groups. Hence, LMBC produced at 2:1 LLR (LDH: magnetic biochar) and 800 â pyrolysis exhibited maximum adsorption over 2 times that of LMBC with 0.5:1 LLR and 400 â pyrolysis. Bamboo-sourced LMBC demonstrated superior adsorption than sewage sludge and garlic-sourced LMBCs due to its increased SSA, enabling a higher loading of nano-LDH. Adsorption of As(III) and Cd(II) onto LMBCs was governed by metal-mineral and metal-containing group through co-precipitation and complexation. This study provides a reference for adjusting the preparation protocols to improve sorption performance of modified biochar toward multiple heavy metals.
Assuntos
Arsênio , Metais Pesados , Cádmio , Carvão Vegetal , Adsorção , Esgotos , Fenômenos MagnéticosRESUMO
Image dehazing, a fundamental problem in computer vision, involves the recovery of clear visual cues from images marred by haze. Over recent years, deploying deep learning paradigms has spurred significant strides in image dehazing tasks. However, many dehazing networks aim to enhance performance by adopting intricate network architectures, complicating training, inference, and deployment procedures. This study proposes an end-to-end U-Net dehazing network model with recursive gated convolution and attention mechanisms to improve performance while maintaining a lean network structure. In our approach, we leverage an improved recursive gated convolution mechanism to substitute the original U-Net's convolution blocks with residual blocks and apply the SK fusion module to revamp the skip connection method. We designate this novel U-Net variant as the Dehaze Recursive Gated U-Net (DRGNet). Comprehensive testing across public datasets demonstrates the DRGNet's superior performance in dehazing quality, detail retrieval, and objective evaluation metrics. Ablation studies further confirm the effectiveness of the key design elements.
RESUMO
Background: Over-treatment of papillary thyroid microcarcinoma (PTMC) has become a common issue. Although active surveillance (AS) has been proposed as an alternative treatment to immediate surgery for PTMC, its inclusion criteria and mortality risk have not been clearly defined. The purpose of this study was to investigate whether surgery can achieve significant survival benefits in patients with larger tumor diameter of papillary thyroid carcinoma (PTC), in order to evaluate the feasibility of expanding the threshold for active surveillance. Methods: This study retrospectively collected data of patients with papillary thyroid carcinoma from the Surveillance, Epidemiology, and End Results (SEER) database between 2000 and 2019. The propensity score matching (PSM) method was used to minimize confounding factors and selection bias between the surgery and non-surgery groups, and to compare the clinical and pathological characteristics between the two groups based on the SEER cohort. Meanwhile, the impact of surgery on prognosis was compared using Kaplan-Meier estimates and Cox proportional hazard models. Results: A total of 175,195 patients were extracted from the database, including 686 patients who received non-surgical treatment, and were matched 1:1 with patients who received surgical treatment using propensity score matching. The Cox proportional hazard forest plot showed that age was the most important factor affecting overall survival (OS) of patients, while tumor size was the most important factor affecting disease-specific survival (DSS) of patients. In terms of tumor size, there was no significant difference in DSS between PTC patients with tumor size of 0-1.0cm who underwent surgical treatment and those who underwent non-surgical treatment, and the relative survival risk began to increase after the tumor size exceeded 2.0cm. Additionally, the Cox proportional hazard forest plot showed that chemotherapy, radioactive iodine, and multifocality were negative factors affecting DSS. Moreover, the risk of death increased over time, and no plateau phase was observed. Conclusion: For patients with papillary thyroid carcinoma (PTC) staged as T1N0M0, AS is a feasible management strategy. As the tumor diameter increases, the risk of death without surgical treatment gradually increases, but there may be a threshold. Within this range, a non-surgical approach may be a potentially viable management strategy. However, beyond this range, surgery may be more beneficial for patient survival. Therefore, it is necessary to conduct more large-scale prospective randomized controlled trials to further confirm these findings.
RESUMO
Purpose: In this study, the aim was to comprehensively analyze the current status, hotspots, and trends of trans-oral endoscopic thyroidectomy (TOET) through bibliometric analysis and by presenting the field atlas. Methods: Web of Science Core Collection database was adopted to screen studies regarding TOET published between January 1, 2008 and August 1, 2022. The evaluation covered the criteria total number of studies, keywords, and contributions from countries/regions, institutions, journals, and authors. Results: A total of 229 studies were covered. SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES is the largest publication in the field of TOET. The three countries that contributed the most studies were Korea, China, and the USA. The most frequently occurring core keywords in the field of TOET are vestibular approach, outcomes, experience, safety, robotic thyroidectomy, scar, video-assisted thyroidectomy and quality-of-life. The seven clusters were generated in this study: intraoperative monitoring of the laryngeal return nerve (# 0), learning curve (# 1), postoperative quality of life (# 2), central lymph node dissection and safety (# 3), complications (# 4), minimally invasive surgery (# 5), and robotic surgery (# 6). Conclusion: The main research topics in the field of TOET place focuses on learning curves, laryngeal nerve monitoring, carbon dioxide gas bolus, chin nerve injury, surgical complications, and surgical safety. In the future, more academics will focus on the safety of the procedure and reducing complications..
RESUMO
Herein, we synthesized an affinity-based probe of myricanol (pMY) with a photo-affinity cross-linker to initiate a bioconjugation reaction, which was applied for target identification in live C2C12 myotubes. Pull-down of biotinylated pMY coupled with mass spectroscopy and Western blotting revealed that pMY can bind with nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme in the nicotinamide adenine dinucleotide salvage pathway. Cellular thermal shift assay, drug affinity responsive target stability assay and recombinant protein labeling further validated the direct interaction between myricanol and Nampt. Myricanol did not affect the protein expression of Nampt, but enhanced its activity. Knock-down of Nampt totally abolished the promoting effect of myricanol on insulin-stimulated glucose uptake in C2C12 myotubes. Taken together, myricanol sensitizes insulin action in myotubes through binding with and activating Nampt.
Assuntos
Insulinas , Nicotinamida Fosforribosiltransferase , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/farmacologia , Fibras Musculares Esqueléticas , Diarileptanoides/farmacologia , Citocinas/metabolismo , Insulinas/metabolismo , Insulinas/farmacologia , NAD/metabolismoRESUMO
In this study, we investigated the effects of epibrassinolide spraying at different growth stages on grain yield and nitrogen use efficiency (NUE), and uptake efficiency (UPE) of wide-belt sowing wheat. The results showed that epibrassinolide spraying enhanced wheat grain yield by increasing the number of kernels per spike and (or) 1000-kernel weight, and improved NUE by promoting aboveground nitrogen accumulation and improving UPE. However, the magnitudes of such enhancements in yield and NUE differed among spraying times. Spraying epibrassinolide at the erecting and filling stages, jointing and filling stages, erecting, jointing, and filling stages, as well as erecting, flowering, and filling stages, produced the greatest increase in the number of kernels per spike and 1000-kernel weight, which led to substantial yield increases (12.8%-14.0%), and the greatest increase in aboveground nitrogen accumulation, which improved UPE by 16.4%-18.8%, and resulted in a significant improvement in NUE. Therefore, spraying epibrassinolide at the erecting and filling stage or jointing and filling stages could achieve high yield and NUE in wide-belt sowing wheat.
Assuntos
Nitrogênio , Triticum , Água , Grão Comestível , EficiênciaRESUMO
Layered double hydroxides (LDH) are the cost-effective and high-efficiency materials for remediation of potentially toxic elements (PTEs) in contaminated soil and groundwater. Herein, the effectiveness and mechanisms of a ternary Ca-Mg-Al LDH (CMAL) for the synergistic remediation of As, Cd, and Pb were investigated in contaminated soils and simulative groundwaters for the first time. The immobilization efficiencies of As, Cd, and Pb in both black soil (BS) and red soil (RS) amended by CMAL at 5 wt% were all > 75%. CMAL amendment transferred more mobile As, Cd, and Pb fractions in soils to immobile species than did Ca-Al LDH and Mg-Al LDH treatments. Furthermore, using a pump-and-treat technology, 82-98% of these 3 PTEs from contaminated groundwater were successfully immobilized in both CMAL treated BS and RS top-soils. Meanwhile, leaching of Ca, Mg, and Al from CMAL was minimal indicating the material was stable. The excellent immobilization performance of CMAL for these PTEs was attributed to the coating of soil microparticles by CMAL nanosheets that allowed complexation of Ca-O-As/Cd or Mg-O-As/Cd/Pb formation, co-precipitation of Ca/Fe-As and Cd(OH)2, and formation of Ca-bridged ternary complex (FeO-Ca-As/Cd). The adverse effect of oppositive pH/Eh-dependence between As and Cd/Pb was overshadowed by these mechanisms and thus allowed As immobilization. Immobilization of As, Cd, and Pb by CMAL amendment was more favorable for RS soil due to its lower reduction potential and more participation of metal-(hydr)oxides for complexation. Overall, the ternary-LDH is a promising synergistic remediation strategy for multi-PTEs contaminated soil and groundwater.
Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Poluentes do Solo , Poluentes do Solo/análise , Cádmio , Chumbo , Solo , Hidróxidos , ÓxidosRESUMO
Background: Artificial intelligence (AI) is more and more widely used in cancer, which is of great help to doctors in diagnosis and treatment. This study aims to summarize the current research hotspots in the Application of Artificial Intelligence in Cancer (AAIC) and to assess the research trends in AAIC. Methods: Scientific publications for AAIC-related research from 1 January 1998 to 1 July 2022 were obtained from the Web of Science database. The metrics analyses using bibliometrics software included publication, keyword, author, journal, institution, and country. In addition, the blustering analysis on the binary matrix was performed on hot keywords. Results: The total number of papers in this study is 1592. The last decade of AAIC research has been divided into a slow development phase (2013-2018) and a rapid development phase (2019-2022). An international collaboration centered in the USA is dedicated to the development and application of AAIC. Li J is the most prolific writer in AAIC. Through clustering analysis and high-frequency keyword research, it has been shown that AI plays a significantly important role in the prediction, diagnosis, treatment and prognosis of cancer. Classification, diagnosis, carcinogenesis, risk, and validation are developing topics. Eight hotspot fields of AAIC were also identified. Conclusion: AAIC can benefit cancer patients in diagnosing cancer, assessing the effectiveness of treatment, making a decision, predicting prognosis and saving costs. Future AAIC research may be dedicated to optimizing AI calculation tools, improving accuracy, and promoting AI.
RESUMO
Background: The coronavirus disease 2019 (COVID-19) pandemic is disrupting routine medical care of cancer patients, including those who have cancer or are undergoing cancer screening. In this study, breast cancer management during the COVID-19 pandemic (BCMP) is reviewed, and the research trends of BCMP are evaluated by quantitative and qualitative evaluation. Methods: In this study, published studies relating to BCMP from 1 January 2020 to 1 April 2022 were searched from the Web of Science database (WoS). Bibliometric indicators consisted of publications, research hotspots, keywords, authors, journals, institutions, nations, and h-index. Results: A total of 182 articles investigating BCMP were searched. The United States of America and the University of Rome Tor Vergata were the nation and the institution with the most publications on BCMP. The first three periodicals with leading published BCMP studies were Breast Cancer Research and Treatment, Breast, and In Vivo. Buonomo OC was the most prolific author in this field, publishing nine articles (9/182, 4.94%). The co-keywords analysis of BCMP suggests that the top hotspots and trends in research are screening, surgery, rehabilitation, emotion, diagnosis, treatment, and vaccine management of breast cancer during the pandemic. The hotspot words were divided into six clusters, namely, screening for breast cancer patients in the pandemic, breast cancer surgery in the pandemic, recovery of breast cancer patients in the pandemic, motion effect of the outbreak on breast cancer patients, diagnosis and treatment of breast cancer patients in the pandemic, and vaccination management for breast cancer patients during a pandemic. Conclusion: BCMP has received attention from scholars in many nations over the last 3 years. This study revealed significant contributions to BCMP research by nations, institutions, scholars, and journals. The stratified clustering study provided the current status and future trends of BCMP to help physicians with the diagnosis and treatment of breast cancer through the pandemic, and provide a reference for in-depth clinical studies on BCMP.
RESUMO
Modified biochar used for soil remediation is affected by exposure to the environment and aging process results in changes in its physicochemical properties and As(V) adsorption and immobilization in soil. Herein, the Ce/Mn-modified wheat straw-biochar (MBC) was manufactured and then aged through three artificial aging processes by exposure to soil with additional natural, freeze-thaw, and dry-wet cycles involved. It revealed that the specific surface areas of freeze-thaw-aged MBC reached 214.98 m2/g and was increased more than those of other two aging treatments. In addition, the pH values and C contents of MBC all decreased after aging while the H and O contents increased. Correspondingly, the contents of O-containing functional groups like C-O, -OH, and CO all increased by >16% with aging. The freeze-thaw cycling and alternating dry-wet aging treatments improved adsorption capacities of As(V) onto MBC and were increased by 16.2 and 10.6% at pH 5, respectively and these samples exhibited the best recyclability and adsorption selectivity for As(V). However, natural aging exerted a lower effect for As(V) adsorption by MBC due to its few changes on physicochemical properties. Causally, the freeze-thaw and dry-wet aging activated the Ce/Mn-oxides to generate Mn2+/3+ species and a new mono-Ce that exerted a strong bonding complexation with As(V) to form Ce/Mn-O-As ligands and increased CeAsO4 precipitation. Our results offer a new insight into the alterations expected for modified biochars with aging treatment in terms of As(V) adsorption for its long-term utilization in As contaminated soil.
Assuntos
Poluentes do Solo , Adsorção , Carvão Vegetal , SoloRESUMO
BACKGROUND: Dysregulation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) family is frequently observed in cancers and associated with their development and progression. However, the expression, role, and clinical significance of the NOX family members in pancreatic cancer remain unexplored. METHODS: The expression levels of the 7 NOX family genes were analyzed in Gene Expression Omnibus (GEO) datasets. The messenger RNA (mRNA) expression and gene alterations were explored using The Cancer Genome Atlas (TCGA) data portal. Clinical significance analyses of the NOX family genes were conducted among pancreatic cancer patients. The expression and prognostic value of dual oxidase 2 (DUOX2) were then validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) in an independent validation cohort. The function of DUOX2 was analyzed by gene set enrichment analysis (GSEA) and its effect on the chemosensitivity of pancreatic cancer cells was detected by Cell Counting Kit-8 (CCK-8) assay. RESULTS: Results showed that NOX1, NOX2 (CYBB), NOX4, DUOX1, and DUOX2 were upregulated, while NOX3 and NOX5 were downregulated in pancreatic cancer tissues compared with nontumor tissues. Genomic alteration analysis demonstrated that deregulation of NOX family genes was partially caused by genomic alterations. Survival analyses showed that only DUOX2 was associated with overall survival (OS) and relapse-free survival (RFS) of pancreatic cancer patients. The DUOX2 gene was observed to be markedly overexpressed in pancreatic cancer. In the GSEA results for pancreatic cancer patients, DUOX2 was significantly associated with oxidoreductase activity acting on nicotinamide adenine dinucleotide hydrogen (NADH) or NADPH and uridine 5'-diphospho-glucuronosyltansferase (UDP) glycosyltransferase activity. Knockdown of DUOX2 in pancreatic cancer cells increased their sensitivity to doxorubicin. CONCLUSIONS: Overexpression of DUOX2 is correlated with prognosis and recurrence in pancreatic cancer patients and acts as a good marker for pancreatic cancer course prediction; furthermore, DUOX2 might be a therapeutic target for pancreatic cancer patients.