Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 1259, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144239

RESUMO

The experimental discovery of Weyl semimetals offers unprecedented opportunities to study Weyl physics in condensed matters. Unique electromagnetic response of Weyl semimetals such as chiral magnetic effect has been observed and presented by the axial θ E · B term in electromagnetic Lagrangian (E and B are the electric and magnetic field, respectively). But till now, the experimental progress in this direction in Weyl semimetals is restricted to the DC regime. Here we report experimental access to the dynamic regime in Weyl semimetal NbAs by combining the internal deformation potential of coupled phonons with applied static magnetic field. While the dynamic E · B field is realized, it produces an anomalous phonon activity with a characteristic angle-dependence. Our results provide an effective approach to achieve the dynamic regime beyond the widely-investigated DC limit which enables the coupling between the Weyl fermions and the electromagnetic wave for further study of novel light-matter interactions in Weyl semimetals.

2.
Nano Lett ; 20(2): 1124-1130, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31916444

RESUMO

We report the optical imaging and absorption spectroscopy on atomically precise armchair graphene nanoribbons (GNRs) on insulating fused silica substrates. This is achieved by controlling light polarization on macroscopically aligned GNRs which greatly enhances the optical contrast of the submonolayer GNRs on the insulating substrates. We measure the linear absorption spectra of 7-armchair and 9-armchair GNRs in this study, and the experimental data agree qualitatively with ab inito calculation results. The polarization spectroscopy technique enables an unambiguous optical identification of GNRs and provides a rapid tool to characterize the transferred film over a large area.

3.
Science ; 364(6436): 158-162, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30819930

RESUMO

Graphene near charge neutrality is expected to behave like a quantum-critical, relativistic plasma-the "Dirac fluid"-in which massless electrons and holes collide at a rapid rate. We used on-chip terahertz spectroscopy to measure the frequency-dependent optical conductivity of clean, micrometer-scale graphene at electron temperatures between 77 and 300 kelvin. At charge neutrality, we observed the quantum-critical scattering rate characteristic of the Dirac fluid. At higher doping, we detected two distinct current-carrying modes with zero and nonzero total momenta, a manifestation of relativistic hydrodynamics. Our work reveals the quantum criticality and unusual dynamic excitations near charge neutrality in graphene.

4.
Phys Rev Lett ; 121(4): 047702, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095956

RESUMO

Quantum-confined electrons in one dimension behave as a Luttinger liquid. However, unambiguous demonstration of Luttinger liquid phenomena in single-walled carbon nanotubes (SWNTs) has been challenging. Here we investigate well-defined SWNT cross junctions with a point contact between two Luttinger liquids and combine electrical transport and optical nanoscopy measurements to correlate completely different physical properties (i.e., the electron tunneling and the plasmon propagation) in the same Luttinger liquid system. The suppressed electron tunneling at SWNT junctions exhibits a power-law scaling, which yields a Luttinger liquid interaction parameter that agrees quantitatively with that independently determined from the plasmon velocity based on the near-field optical nanoscopy.

5.
Nano Lett ; 17(6): 3662-3667, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28460175

RESUMO

Surface plasmons (SPs) and phonon polaritons (PhPs) are two distinctive quasiparticles resulting from the strong coupling of photons with electrons and optical phonons, respectively. In this Letter, we investigate the interactions between one-dimensional (1D) plasmons in silver nanowires with two-dimensional (2D) surface phonon polaritons of the silicon carbide (SiC) substrate. Using near-field infrared spectroscopy of the silver nanowire-SiC heterostructure at wavelengths close to the phonon resonance of SiC, we observe that the 1D plasmon dispersion is strongly modified by the 2D phonon polaritons in SiC. In particular, we observe for the first time well-defined 1D plasmon oscillations with the plasmon wavelengths longer than the free-space photon wavelengths due to the 1D plasmon-2D phonon polariton coupling. Our work demonstrates that unusual polariton behavior can emerge from interactions between polariton excitons of different dimensionality, which can enable new ways to engineer plasmons in hybrid structures.

6.
Nat Mater ; 15(8): 840-4, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27240109

RESUMO

Layer-stacking domain walls in bilayer graphene are emerging as a fascinating one-dimensional system that features stacking solitons structurally and quantum valley Hall boundary states electronically. The interactions between electrons in the 2D graphene domains and the one-dimensional domain-wall solitons can lead to further new quantum phenomena. Domain-wall solitons of varied local structures exist along different crystallographic orientations, which can exhibit distinct electrical, mechanical and optical properties. Here we report soliton-dependent 2D graphene plasmon reflection at different 1D domain-wall solitons in bilayer graphene using near-field infrared nanoscopy. We observe various domain-wall structures in mechanically exfoliated graphene bilayers, including network-forming triangular lattices, individual straight or bent lines, and even closed circles. The near-field infrared contrast of domain-wall solitons arises from plasmon reflection at domain walls, and exhibits markedly different behaviours at the tensile- and shear-type domain-wall solitons. In addition, the plasmon reflection at domain walls exhibits a peculiar dependence on electrostatic gating. Our study demonstrates the unusual and tunable coupling between 2D graphene plasmons and domain-wall solitons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA