Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 8(1): e2300957, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37802971

RESUMO

Electrochemically converting CO2 back into fuels and chemicals is promising in alleviating the greenhouse effect worldwide. Various high-efficiency catalysts have been achieved, yet the unsatisfied structural stability under CO2 electrolysis conditions restricts their practical application. Herein, a sub-5 nm sized CuInS2 quantum dots (CIS-QDs) based electrocatalyst for converting CO2 into CO are developed. Taking advantage of the stable M─Ch (metal-chalcogenide) covalent bonds, and unique p-block metal properties, the as-prepared catalyst exhibits excellent structural stability under large overpotentials and can achieve a high CO Faradaic efficiency (FE) of 86% (total CO2 reduction FE of 89%) at -0.65 V versus reversible hydrogen electrode with long-term durability of 40 h and outstanding current densities of 10.6 mA cm-2 simultaneously. Furthermore, detailed electrochemical analyses revealed that the excellent performance of the as-prepared catalysts shall be attributed to the high-density active sites and fast charge transfer brought by the ultrasmall size of CIS-QDs. This work provides insights into the design of high-density and stable catalytic sites for developing high-performance electrocatalysts.

2.
J Am Chem Soc ; 145(25): 13805-13815, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37317527

RESUMO

The alkaline hydrogen oxidation reaction (HOR) involves the coupling of adsorbed hydrogen (Had) and hydroxyl (OHad) species and is thus orders of magnitude slower than that in acid media. According to the Sabatier principle, developing electrocatalysts with appropriate binding energy for both intermediates is vital to accelerating the HOR though it is still challenging. Herein, we propose an unconventional bilateral compressive strained Ni-Ir interface (Ni-Ir(BCS)) as efficient synergistic HOR sites. Density functional theory (DFT) simulations reveal that the bilateral compressive strain effect leads to the appropriate adsorption for both Had and OHad, enabling their coupling thermodynamically spontaneous and kinetically preferential. Such Ni-Ir(BCS) is experimentally achieved by embedding sub-nanometer Ir clusters in graphene-loaded high-density Ni nanocrystals (Ni-Ir(BCS)/G). As predicted, it exhibits a HOR mass activity of 7.95 and 2.88 times those of commercial Ir/C and Pt/C together with much enhanced CO tolerance, respectively, ranking among the most active state-of-the-art HOR catalysts. These results provide new insights into the rational design of advanced electrocatalysts involving coordinated adsorption and activation of multiple reactants.

3.
Chem Sci ; 13(44): 13172-13177, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425499

RESUMO

Electrocatalytic CO2 reduction driven by renewable energy has become a promising approach to rebalance the carbon cycle. Atomically dispersed transition metals anchored on N-doped carbon supports (M-N-C) have been considered as the most attractive catalysts to catalyze CO2 to CO. However, the sluggish kinetics of M-N-C limits the large-scale application of this type of catalyst. Here, it is found that the introduction of single atomic Mn-N auxiliary sites could effectively buffer the locally generated OH- on the catalytic interface of the single-atomic Ni-N-C sites, thus accelerating proton-coupled electron transfer (PCET) steps to enhance the CO2 electroreduction to CO. The constructed diatomic Ni/Mn-N-C catalysts show a CO faradaic efficiency of 96.6% and partial CO current density of 13.3 mA cm-2 at -0.76 V vs. RHE, outperforming that of monometallic single-atomic Ni-N-C or Mn-N-C counterparts. The results suggest that constructing synergistic catalytic sites to regulate the surface local microenvironment might be an attractive strategy for boosting CO2 electroreduction to value-added products.

4.
Chem Sci ; 13(29): 8597-8604, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35974754

RESUMO

Water splitting is considered a promising approach for renewable and sustainable energy conversion. The development of water splitting electrocatalysts that have low-cost, long-lifetime, and high-performance is an important area of research for the sustainable generation of hydrogen and oxygen gas. Here, we report a metal-free porphyrin-based two-dimensional crystalline covalent organic polymer obtained from the condensation of terephthaloyl chloride and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin which is stabilized by an extensive hydrogen bonding network. This material exhibits bifunctional electrocatalytic performance towards water splitting with onset overpotentials, η, of 36 mV and 110 mV for HER (in 0.5 M H2SO4) and OER (in 1.0 M KOH), respectively. The as-synthesized material is also able to perform water splitting in neutral phosphate buffer saline solution, with 294 mV for HER and 520 mV for OER, respectively. Characterized by electrochemical impedance spectroscopy (EIS) and chronoamperometry, the as-synthesized material also shows enhanced conductivity and stability compared to its molecular counterpart. Inserting a non-redox active zinc metal center in the porphyrin unit leads to a decrease in electrochemical activity towards both HER and OER, suggesting the four-nitrogen porphyrin core is the active site. The high performance of this metal-free material towards water splitting provides a sustainable alternative to the use of scarce and expensive metal electrocatalysts in energy conversion for industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA