Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genet Mol Biol ; 46(4): e20230090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285431

RESUMO

Preterm birth (PTB) is the main condition related to perinatal morbimortality worldwide. The aim of this study was to identify gene-environment interactions associated with spontaneous PTB or its predictors. We carried out a retrospective case-control study including parental sociodemographic and obstetric data as well as newborn genetic variants of 69 preterm and 61 at term newborns born at a maternity hospital from Tucumán, Argentina, between 2005 and 2010. A data-driven Bayesian network including the main PTB predictors was created where we identified gene-environment interactions. We used logistic regressions to calculate the odds ratios and confidence intervals of the interactions. From the main PTB predictors (nine exposures and six genetic variants) we identified an interaction between low neighbourhood socioeconomic status and rs2074351 (PON1, genotype GG) variant that was associated with an increased risk of toxoplasmosis (odds ratio 12.51, confidence interval 95%: 1.71 - 91.36). The results of this exploratory study suggest that structural social disparities could influence the PTB risk by increasing the frequency of exposures that potentiate the risk associated with individual characteristics such as genetic traits. Future studies with larger sample sizes are necessary to confirm these findings.

2.
J Community Genet ; 13(6): 557-565, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35976607

RESUMO

Preterm birth (PTB) is the main condition related to perinatal morbimortality worldwide. The aim of this study was to identify associations of spontaneous PTB with genetic variants, exposures, and interactions between and within them. We carried out a retrospective case-control study including parental sociodemographic and obstetric data, and fetal genetic variants. We sequenced the coding and flanking regions of five candidate genes from the placental blood cord of 69 preterm newborns and 61 at term newborns. We identify the characteristics with the greatest predictive power of PTB using penalized regressions, in which we include exposures (E), genetic variants (G), and two-way interactions. Few prenatal visits (< 5) was the main predictor of PTB from 26 G, 35 E, 299 G × G, 564 E × E, and 875 G × E evaluated terms. Within the fetal genetic characteristics, we observed associations of rs4845397 (KCNN3, allele T) variant; G × G interaction between rs12621551 (COL4A3, allele T) and rs73993878 (COL4A3, allele A), which showed sensitivity to anemia; and G × G interaction between rs11680670 (COL4A3, allele T) and rs2074351 (PON1, allele A), which showed sensitivity to vaginal discharge. The results of this exploratory study suggest that social disparities and metabolic pathways linked to uterine relaxation, inflammation/infections, and collagen metabolism would be involved in PTB etiology. Future studies with a larger sample size are necessary to confirm these findings and to analyze a greater number of exposures.

3.
Clin. biomed. res ; 42(3): 218-225, 2022.
Artigo em Inglês | LILACS | ID: biblio-1415205

RESUMO

Introduction: Dried blood spot (DBS) samples have been used for diagnostic purposes since their introduction in the neonatal screening of phenylketonuria almost 50 years ago. The range of its application has been extended to modern approaches, such as next-generation sequencing (NGS) for molecular genetic testing. This study aimed to evaluate the use of a standardized organic method for DNA extraction from DBS samples in the diagnostic setting.Methods: The clinical applicability of the method was tested using 3 samples collected from a newborn screening project for lysosomal storage diseases, allowing the determination of the genotype of the individuals. DNA was extracted from 3 3-mm diameter DBS punches. Quality, purity, and concentration were determined, and method performance was assessed by standard polymerase chain reaction, restriction length polymorphism, Sanger sequencing, and targeted NGS.Results: Results were compared with the ones obtained from DNA samples extracted following the internally validated in-house extraction protocol that used 6 3-mm punches of DBS and samples extracted from whole blood.Conclusion: This organic method proved to be effective in obtaining high-quality DNA from DBS, being compatible with several downstream molecular applications, in addition to having a lower cost per sample


Assuntos
Humanos , Recém-Nascido , Reação em Cadeia da Polimerase/estatística & dados numéricos , Triagem Neonatal , Análise de Sequência de DNA/estatística & dados numéricos , DNA/genética , Teste em Amostras de Sangue Seco/estatística & dados numéricos
4.
Am J Med Genet C Semin Med Genet ; 187(3): 349-356, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960103

RESUMO

Mucopolysaccharidosis type II (MPS II) is an X-linked inherited disease caused by pathogenic variants in the IDS gene, leading to deficiency of the lysosomal enzyme iduronate-2-sulfatase and consequent widespread storage of glycosaminoglycans, leading to several clinical consequences, with progressive manifestations which most times includes cognitive decline. MPS II has wide allelic and clinical heterogeneity and a complex genotype-phenotype correlation. We evaluated data from 501 Brazilian patients diagnosed with MPS II from 1982 to 2020. We genotyped 280 of these patients (55.9%), which were assigned to 206 different families. Point mutations were present in 70% of our patients, being missense variants the most frequent. We correlated the IDS pathogenic variants identified with the phenotype (neuronophatic or non-neuronopathic). Except for two half-brothers, there was no discordance in the genotype-phenotype correlation among family members, nor among MPS II patients from different families with the same single base-pair substitution variant. Mothers were carriers in 82.0% of the cases. This comprehensive study of the molecular profile of the MPS II cases in Brazil sheds light on the genotype-phenotype correlation and helps the better understanding of the disease and the prediction of its clinical course, enabling the provision of a more refined genetic counseling to the affected families.


Assuntos
Mucopolissacaridose II , Brasil , Genótipo , Humanos , Masculino , Mucopolissacaridose II/genética , Mutação , Fenótipo
5.
Genet Mol Biol ; 44(1): e20200138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33503199

RESUMO

The mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by 11 enzyme deficiencies, classified into seven types. Data on the birth prevalence of each MPS type are available for only a few countries, and the totality of cases may be underestimated. To determine the epidemiological profile of MPS in each Brazilian region, we analyzed data collected between 1982 and 2019 by a national reference laboratory and identified 1,652 patients. Using data between 1994 and 2018, the birth prevalence (by 100,000 live births) for MPS was 1.57. MPS II was the most common type of MPS in Brazil, and its birth prevalence was 0.48 (0.94 considering only male births). Regarding the number of cases per region, MPS II was the most frequent in the North and Center-West (followed by MPS VI), and also in the Southeast (followed by MPS I); MPS I and MPS II were the most common types in the South; and MPS VI was the most common in the Northeast (followed by MPS II). The differences observed in the relative frequencies of MPS types across Brazilian regions are likely linked to founder effect, endogamy, and consanguinity, but other factors may be present and need further investigation.

6.
J. inborn errors metab. screen ; 8: e20200010, 2020. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1143188

RESUMO

Abstract Neuronal ceroid lipofuscinoses (NCLs), also referred as "Batten disease", are a group of thirteen rare genetic conditions, which are part of the lysosomal storage disorders. CLN type 2 (CLN2) is caused by the deficient activity of the tripeptidyl peptidase I (TPP1) enzyme, encoded by the TPP1 gene, most frequently leading to the classic late infantile phenotype. Nearly 140 CLN2-causing mutations have been described. In this case report, we describe the identification of a new disease-causing mutation and highlight the importance of appropriate laboratory investigation based on clinical suspicion. The collection of dried blood spots (DBS) on filter paper, which is a convenient sample, can be used to measure the TPP1 enzyme activity and detect CLN2-related mutations. Since the biochemical and genetic diagnoses are possible and as the disease progression is fast and the therapeutic window is short, the investigation of CLN2 should be always considered when this diagnostic hypothesis is raised in order to enable the patients to benefit from the specific pharmacological treatment.

7.
Rev Peru Med Exp Salud Publica ; 36(3): 475-480, 2019.
Artigo em Espanhol | MEDLINE | ID: mdl-31800942

RESUMO

Duchenne and Becker muscular dystrophies are rare diseases that receive limited attention in our field. The objective of this study was to implement the Multiplex Ligation-dependent Probe Amplification technique (MLPA) and to demonstrate that it has advantages over the Multiplex Polymerase Chain Reaction (Multiplex PCR) technique. Samples from 40 individuals with a presumptive diagnosis of Duchenne and Becker muscular dystrophies were analyzed: first by Multiplex PCR and then by MLPA. Fifteen individuals with causal deletions were detected with Multiplex PCR, while the MLPA technique was able to diagnose 21 individuals, four duplications, and 17 deletions. In conclusion, the MLPA technique can detect mutations of the exon deletion and duplication type, yielding a larger number of molecular diagnoses due to alterations in the DMD gene.


Las distrofias musculares de Duchenne/Becker son enfermedades raras que reciben poca atención en nuestro medio. El objetivo del presente estudio fue implementar la técnica de amplificación múltiple dependiente de ligación por sondas (MLPA) y demostrar que tiene ventajas sobre la técnica de reacción en cadena de la polimerasa multiplex (PCR-multiplex). Se analizaron muestras de 40 individuos con diagnóstico presuntivo de distrofia muscular de Duchenne/Becker, primero por PCR-multiplex y luego por MLPA. Con la PCR-multiplex se detectaron 15 individuos con deleciones causales y con la técnica MLPA se logró diagnosticar a 21 individuos, cuatro duplicaciones y 17 deleciones. En conclusión, la técnica MLPA logra detectar mutaciones de tipo deleción y duplicación de exones, consiguiendo un mayor número de diagnósticos moleculares por alteraciones en el gen DMD.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Distrofia Muscular de Duchenne/genética , Mutação , Adolescente , Criança , Humanos , Masculino , Linhagem , Estudos Prospectivos
8.
Rev. peru. med. exp. salud publica ; 36(3): 475-480, jul.-sep. 2019. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1058755

RESUMO

RESUMEN Las distrofias musculares de Duchenne/Becker son enfermedades raras que reciben poca atención en nuestro medio. El objetivo del presente estudio fue implementar la técnica de amplificación múltiple dependiente de ligación por sondas (MLPA) y demostrar que tiene ventajas sobre la técnica de reacción en cadena de la polimerasa multiplex (PCR-multiplex). Se analizaron muestras de 40 individuos con diagnóstico presuntivo de distrofia muscular de Duchenne/Becker, primero por PCR-multiplex y luego por MLPA. Con la PCR-multiplex se detectaron 15 individuos con deleciones causales y con la técnica MLPA se logró diagnosticar a 21 individuos, cuatro duplicaciones y 17 deleciones. En conclusión, la técnica MLPA logra detectar mutaciones de tipo deleción y duplicación de exones, consiguiendo un mayor número de diagnósticos moleculares por alteraciones en el gen DMD.


ABSTRACT Duchenne and Becker muscular dystrophies are rare diseases that receive limited attention in our field. The objective of this study was to implement the Multiplex Ligation-dependent Probe Amplification technique (MLPA) and to demonstrate that it has advantages over the Multiplex Polymerase Chain Reaction (Multiplex PCR) technique. Samples from 40 individuals with a presumptive diagnosis of Duchenne and Becker muscular dystrophies were analyzed: first by Multiplex PCR and then by MLPA. Fifteen individuals with causal deletions were detected with Multiplex PCR, while the MLPA technique was able to diagnose 21 individuals, four duplications, and 17 deletions. In conclusion, the MLPA technique can detect mutations of the exon deletion and duplication type, yielding a larger number of molecular diagnoses due to alterations in the DMD gene.


Assuntos
Adolescente , Criança , Humanos , Masculino , Distrofia Muscular de Duchenne/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Mutação , Linhagem , Estudos Prospectivos
9.
Genet Mol Biol ; 42(1 suppl 1): 197-206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30985853

RESUMO

Lysosomal storage disorders (LSDs) constitute a heterogeneous group of approximately 50 genetic disorders. LSDs diagnosis is challenging due to variability in phenotype penetrance, similar clinical manifestations, and a high allelic heterogeneity. A powerful tool for the diagnosis of the disease could reduce the "diagnostic odyssey" for affected families, leading to an appropriate genetic counseling and a better outcome for current therapies, since enzyme replacement therapies have been approved in Brazil for Gaucher, Fabry, and Pompe diseases, and are under development for Niemann-Pick Type B. However, application of next-generation sequencing (NGS) technology in the clinical diagnostic setting requires a previous validation phase. Here, we assessed the application of this technology as a fast, accurate, and cost-effective method to determine genetic diagnosis in selected LSDs. We have designed two panels for testing simultaneously 11 genes known to harbor casual mutations of LSDs. A cohort of 58 patients was used to validate those two panels, and the clinical utility of these gene panels was tested in four novel cases. We report the assessment of a NGS approach as a new tool in the diagnosis of LSDs in our service.

10.
Genet Mol Biol ; 42(1 suppl 1): 207-214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30985855

RESUMO

Mucopolysaccharidosis (MPS) are a group of rare genetic disorders caused by deficiency in the activity of specific lysosomal enzymes required for the degradation of glycosaminoglycans (GAGs). A defect in the activity of these enzymes will result in the abnormal accumulation of GAGs inside the lysosomes of most cells, inducing progressive cellular damage and multiple organ failure. DNA samples from 70 patients with biochemical diagnosis of different MPSs genotypes confirmed by Sanger sequencing were used to evaluate a Next Generation Sequencing (NGS) protocol. Eleven genes related to MPSs were divided into three different panels according to the clinical phenotype. This strategy led to the identification of several pathogenic mutations distributed across all exons of MPSs-related genes. We were able to identify 96% of all gene variants previously identified by Sanger sequencing, showing high sensitivity in detecting different types of mutations. Furthermore, new variants were not identified, representing 100% specificity of the NGS protocol. The use of this NGS approach for genotype identification in MPSs is an attractive option for diagnosis of patients. In addition, the MPS diagnosis workflow could be divided in a two-tier approach: NGS as a first-tier followed by biochemical confirmation as a second-tier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA