Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069441

RESUMO

Following the in vivo biodistribution of platelets can contribute to a better understanding of their physiological and pathological roles, and nuclear imaging methods, such as single photon emission tomography (SPECT), provide an excellent method for that. SPECT imaging needs stable labeling of the platelets with a radioisotope. In this study, we report a new method to label platelets with 99mTc, the most frequently used isotope for SPECT in clinical applications. The proposed radiolabeling procedure uses a membrane-binding peptide, duramycin. Our results show that duramycin does not cause significant platelet activation, and radiolabeling can be carried out with a procedure utilizing a simple labeling step followed by a size-exclusion chromatography-based purification step. The in vivo application of the radiolabeled human platelets in mice yielded quantitative biodistribution images of the spleen and liver and no accumulation in the lungs. The performed small-animal SPECT/CT in vivo imaging investigations revealed good in vivo stability of the labeling, which paves the way for further applications of 99mTc-labeled-Duramycin in platelet imaging.


Assuntos
Bacteriocinas , Tomografia Computadorizada de Emissão de Fóton Único , Camundongos , Humanos , Animais , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Peptídeos/metabolismo , Bacteriocinas/metabolismo
2.
Sci Rep ; 13(1): 18752, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907509

RESUMO

The important roles of bacterial outer membrane vesicles (OMVs) in various diseases and their emergence as a promising platform for vaccine development and targeted drug delivery necessitates the development of imaging techniques suitable for quantifying their biodistribution with high precision. To address this requirement, we aimed to develop an OMV specific radiolabeling technique for positron emission tomography (PET). A novel bacterial strain (E. coli BL21(DE3) ΔnlpI, ΔlpxM) was created for efficient OMV production, and OMVs were characterized using various methods. SpyCatcher was anchored to the OMV outer membrane using autotransporter-based surface display systems. Synthetic SpyTag-NODAGA conjugates were tested for OMV surface binding and 64Cu labeling efficiency. The final labeling protocol shows a radiochemical purity of 100% with a ~ 29% radiolabeling efficiency and excellent serum stability. The in vivo biodistribution of OMVs labeled with 64Cu was determined in mice using PET/MRI imaging which revealed that the biodistribution of radiolabeled OMVs in mice is characteristic of previously reported data with the highest organ uptakes corresponding to the liver and spleen 3, 6, and 12 h following intravenous administration. This novel method can serve as a basis for a general OMV radiolabeling scheme and could be used in vaccine- and drug-carrier development based on bioengineered OMVs.


Assuntos
Escherichia coli , Vesículas Extracelulares , Animais , Camundongos , Escherichia coli/metabolismo , Membrana Externa Bacteriana/metabolismo , Distribuição Tecidual , Vesículas Extracelulares/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Imagem Molecular
4.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003394

RESUMO

The need for stable and well-defined magnetic nanoparticles is constantly increasing in biomedical applications; however, their preparation remains challenging. We used two different solvothermal methods (12 h reflux and a 4 min microwave, MW) to synthesize amine-functionalized zinc ferrite (ZnFe2O4-NH2) superparamagnetic nanoparticles. The morphological features of the two ferrite samples were the same, but the average particle size was slightly larger in the case of MW activation: 47 ± 14 nm (Refl.) vs. 63 ± 20 nm (MW). Phase identification measurements confirmed the exclusive presence of zinc ferrite with virtually the same magnetic properties. The Refl. samples had a zeta potential of -23.8 ± 4.4 mV, in contrast to the +7.6 ± 6.8 mV measured for the MW sample. To overcome stability problems in the colloidal phase, the ferrite nanoparticles were embedded in polyvinylpyrrolidone and could be easily redispersed in water. Two PVP-coated zinc ferrite samples were administered (1 mg/mL ZnFe2O4) in X BalbC mice and were compared as contrast agents in magnetic resonance imaging (MRI). After determining the r1/r2 ratio, the samples were compared to other commercially available contrast agents. Consistent with other SPION nanoparticles, our sample exhibits a concentrated presence in the hepatic region of the animals, with comparable biodistribution and pharmacokinetics suspected. Moreover, a small dose of 1.3 mg/body weight kg was found to be sufficient for effective imaging. It should also be noted that no toxic side effects were observed, making ZnFe2O4-NH2 advantageous for pharmaceutical formulations.


Assuntos
Meios de Contraste , Nanopartículas , Camundongos , Animais , Polímeros , Aminas , Zinco , Distribuição Tecidual , Imageamento por Ressonância Magnética/métodos , Compostos Férricos , Preparações Farmacêuticas
5.
Front Immunol ; 14: 1204543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383226

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to millions of infections and deaths worldwide. As this virus evolves rapidly, there is a high need for treatment options that can win the race against new emerging variants of concern. Here, we describe a novel immunotherapeutic drug based on the SARS-CoV-2 entry receptor ACE2 and provide experimental evidence that it cannot only be used for (i) neutralization of SARS-CoV-2 in vitro and in SARS-CoV-2-infected animal models but also for (ii) clearance of virus-infected cells. For the latter purpose, we equipped the ACE2 decoy with an epitope tag. Thereby, we converted it to an adapter molecule, which we successfully applied in the modular platforms UniMAB and UniCAR for retargeting of either unmodified or universal chimeric antigen receptor-modified immune effector cells. Our results pave the way for a clinical application of this novel ACE2 decoy, which will clearly improve COVID-19 treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19
6.
Int J Nanomedicine ; 18: 2071-2086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113796

RESUMO

Introduction: One of the major challenges in the clinical translation of nanoparticles is the development of formulations combining favorable efficacy and optimal safety. In the past, iron oxide nanoparticles have been introduced as an alternative for gadolinium-containing contrast agents; however, candidates available at the time were not free from adverse effects. Methods: Following the development of a potent iron oxide-based contrast agent SPIONDex, we now performed a systematic comparison of this formulation with the conventional contrast agent ferucarbotran and with ferumoxytol, taking into consideration their physicochemical characteristics, bio- and hemocompatibility in vitro and in vivo, as well as their liver imaging properties in rats. Results: The results demonstrated superior in vitro cyto-, hemo- and immunocompatibility of SPIONDex in comparison to the other two formulations. Intravenous administration of ferucarbotran or ferumoxytol induced strong complement activation-related pseudoallergy in pigs. In contrast, SPIONDex did not elicit any hypersensitivity reactions in the experimental animals. In a rat model, comparable liver imaging properties, but a faster clearance was demonstrated for SPIONDex. Conclusion: The results indicate that SPIONDex possess an exceptional safety compared to the other two formulations, making them a promising candidate for further clinical translation.


Assuntos
Meios de Contraste , Nanopartículas de Magnetita , Ratos , Animais , Suínos , Óxido Ferroso-Férrico , Segurança do Paciente , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/toxicidade
7.
Geroscience ; 45(4): 2179-2193, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36879183

RESUMO

Ivermectin, an antiparasitic drug, has been repurposed for COVID-19 treatment during the SARS-CoV-2 pandemic. Although its antiviral efficacy was confirmed early in vitro and in preclinical studies, its clinical efficacy remained ambiguous. Our purpose was to assess the efficacy of ivermectin in terms of time to viral clearance based on the meta-analysis of available clinical trials at the closing date of the data search period, one year after the start of the pandemic. This meta-analysis was reported by following the PRISMA guidelines and by using the PICO format for formulating the question. The study protocol was registered on PROSPERO. Embase, MEDLINE (via PubMed), Cochrane Central Register of Controlled Trials (CENTRAL), bioRvix, and medRvix were searched for human studies of patients receiving ivermectin therapy with control groups. No language or publication status restrictions were applied. The search ended on 1/31/2021 exactly one year after WHO declared the public health emergency on novel coronavirus. The meta-analysis of three trials involving 382 patients revealed that the mean time to viral clearance was 5.74 days shorter in case of ivermectin treatment compared to the control groups [WMD = -5.74, 95% CI (-11.1, -0.39), p = 0.036]. Ivermectin has significantly reduced the time to viral clearance in mild to moderate COVID-19 diseases compared to control groups. However, more eligible studies are needed for analysis to increase the quality of evidence of ivermectin use in COVID-19.


Assuntos
COVID-19 , Humanos , Ivermectina/uso terapêutico , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Resultado do Tratamento
8.
Sci Rep ; 12(1): 19441, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376345

RESUMO

Aiming to improve the postoperative outcome of associating liver partition and portal vein ligation for staged hepatectomy (ALPPS), the effect of physical prehabilitation (PP) was investigated in experimental model. Male Wistar rats (n = 106) divided to PP and sedentary (S) groups underwent ALPPS. Changes in liver weight, Ki67 index and liver volume by magnetic resonance imaging (MRI) were evaluated. Liver function was assessed by laboratory parameters and 99mTc-mebrofenin single-photon emission computed tomography (SPECT) hepatobiliary scintigraphy (HBS). Utilizing endotoxemia model mortality and septic parameters were investigated. Liver mass (p < 0.001), Ki67 index (p < 0.001) and MRI liver volume (p < 0.05) increased in the PP group compared to the S group. Both standard laboratory parameters (p < 0.001) and HBS (p < 0.05) showed enhanced liver function in the PP group compared to the S group. The vulnerability of animals improved in the PP group, as mortality decreased (p < 0.001), while septic laboratory parameters improved (p < 0.05) compared to the S group in the endotoxemia model. Our study demonstrated for the first time the beneficial role of PP on not only volumetric but also functional liver regeneration and postoperative vulnerability after ALLPS.


Assuntos
Endotoxemia , Neoplasias Hepáticas , Humanos , Ratos , Animais , Masculino , Hepatectomia/métodos , Veia Porta/cirurgia , Antígeno Ki-67 , Exercício Pré-Operatório , Resultado do Tratamento , Ratos Wistar , Fígado/cirurgia , Regeneração Hepática , Ligadura , Modelos Teóricos
9.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232467

RESUMO

Nutritional interventions may highly contribute to the maintenance or restoration of human health. Grapes (Vitis vinifera) are one of the oldest known beneficial nutritional components of the human diet. Their high polyphenol content has been proven to enhance human health beyond doubt in statistics-based public health studies, especially in the prevention of cardiovascular disease and cancer. The current review concentrates on presenting and classifying polyphenol bioactive molecules (resveratrol, quercetin, catechin/epicatechin, etc.) available in high quantities in Vitis vinifera grapes or their byproducts. The molecular pathways and cellular signaling cascades involved in the effects of these polyphenol molecules are also presented in this review, which summarizes currently available in vitro and in vivo experimental literature data on their biological activities mostly in easily accessible tabular form. New molecules for different therapeutic purposes can also be synthesized based on existing polyphenol compound classes available in high quantities in grape, wine, and grape marc. Therefore an overview of these molecular structures is provided. Novel possibilities as dendrimer nanobioconjugates are reviewed, too. Currently available in vitro and in vivo experimental literature data on polyphenol biological activities are presented in easily accessible tabular form. The scope of the review details the antidiabetic, anticarcinogenic, antiviral, vasoprotective, and neuroprotective roles of grape-origin flavonoids. The novelty of the study lies in the description of the processing of agricultural by-products (grape seeds and skins) of industrial relevance, and the detailed description of the molecular mechanisms of action. In addition, the review of the clinical therapeutic applications of polyphenols is unique as no summary study has yet been done.


Assuntos
Catequina , Dendrímeros , Vitis , Antioxidantes/farmacologia , Antivirais/análise , Flavonoides/farmacologia , Humanos , Hipoglicemiantes/análise , Polifenóis/análise , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Quercetina/análise , Resveratrol , Sementes/química , Vitis/química
10.
PLoS One ; 17(7): e0264554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35857783

RESUMO

The aim of this study was to develop and characterize a Prussian Blue based biocompatible and chemically stable T1 magnetic resonance imaging (MRI) contrast agent with near infrared (NIR) optical contrast for preclinical application. The physical properties of the Prussian blue nanoparticles (PBNPs) (iron (II); iron (III);octadecacyanide) were characterized with dynamic light scattering (DLS), zeta potential measurement, atomic force microscopy (AFM), and transmission electron microscopy (TEM). In vitro contrast enhancement properties of PBNPs were determined by MRI. In vivo T1-weighted contrast of the prepared PBNPs was investigated by MRI and optical imaging modality after intravenous administration into NMRI-Foxn1 nu/nu mice. The biodistribution studies showed the presence of PBNPs predominantly in the cardiovascular system. Briefly, in this paper we show a novel approach for the synthesis of PBNPs with enhanced iron content for T1 MRI contrast. This newly synthetized PBNP platform could lead to a new diagnostic agent, replacing the currently used Gadolinium based substances.


Assuntos
Meios de Contraste , Nanopartículas , Animais , Corantes , Meios de Contraste/química , Ferrocianetos/química , Ferro , Imageamento por Ressonância Magnética/métodos , Camundongos , Nanopartículas/química , Distribuição Tecidual
11.
Theranostics ; 12(10): 4684-4702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832092

RESUMO

Rationale: Human induced pluripotent stem cell-derived endothelial cells can be candidates for engineering therapeutic vascular grafts. Methods: Here, we studied the role of three-dimensional culture on their characteristics and function both in vitro and in vivo. Results: We found that differentiated hPSC-EC can re-populate decellularized biomatrices; they remain viable, undergo maturation and arterial/venous specification. Human PSC-EC develop antifibrotic, vasoactive and anti-inflammatory properties during recellularization. In vivo, a robust increase in perfusion was detected at the engraftment sites after subcutaneous implantation of an hPSC-EC-laden hydrogel in rats. Histology confirmed survival and formation of capillary-like structures, suggesting the incorporation of hPSC-EC into host microvasculature. In a canine model, hiPSC-EC-seeded onto decellularised vascular segments were functional as aortic grafts. Similarly, we showed the retention and maturation of hiPSC-EC and dynamic remodelling of the vessel wall with good maintenance of vascular patency. Conclusions: A combination of hPSC-EC and biomatrices may be a promising approach to repair ischemic tissues.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Prótese Vascular , Diferenciação Celular , Cães , Células Endoteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ratos
12.
Front Oncol ; 12: 820136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756658

RESUMO

Purpose: For the identification of high-risk patients in diffuse large B-cell lymphoma (DLBCL), we investigated the prognostic significance of in vivo radiomics derived from baseline [18F]FDG PET/CT and clinical parameters. Methods: Pre-treatment [18F]FDG PET/CT scans of 85 patients diagnosed with DLBCL were assessed. The scans were carried out in two clinical centers. Two-year event-free survival (EFS) was defined. After delineation of lymphoma lesions, conventional PET parameters and in vivo radiomics were extracted. For 2-year EFS prognosis assessment, the Center 1 dataset was utilized as the training set and underwent automated machine learning analysis. The dataset of Center 2 was utilized as an independent test set to validate the established predictive model built by the dataset of Center 1. Results: The automated machine learning analysis of the Center 1 dataset revealed that the most important features for building 2-year EFS are as follows: max diameter, neighbor gray tone difference matrix (NGTDM) busyness, total lesion glycolysis, total metabolic tumor volume, and NGTDM coarseness. The predictive model built on the Center 1 dataset yielded 79% sensitivity, 83% specificity, 69% positive predictive value, 89% negative predictive value, and 0.85 AUC by evaluating the Center 2 dataset. Conclusion: Based on our dual-center retrospective analysis, predicting 2-year EFS built on imaging features is feasible by utilizing high-performance automated machine learning.

13.
Res Rep Urol ; 14: 193-202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572814

RESUMO

Purpose: A number of studies have confirmed that elevated platelet count accompanying various solid tumours is associated with worse survival. However, only meagre data are available on the relationship between thrombocytosis and survival in prostate cancer. Methods: We conducted a retrospective analysis on clinical-pathological data accumulated from 316 patients during on average 51 months of follow-up after laparoscopic prostatectomy performed for prostate cancer. We analyzed the relationship between platelet count, risk factors, prostate-specific antigen (PSA) and cancer stage with use the Tumor, Node, Metastase system (TNM), as well as surgical margin, and prognosis. Results: Thrombocytosis occurred in only one out of the 316 patients. The multivariate Cox proportional hazard model showed that preoperative PSA, risk group, preoperative haemoglobin level, and surgical margin status were significant, independent predictors of biochemical progression-free survival. By contrast, age at diagnosis and thrombocytosis had no such predictive value. Conclusion: We could not demonstrate an association between elevated platelet count and worse survival in our study population of patients with prostate cancer.

14.
Nanomaterials (Basel) ; 12(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35564185

RESUMO

When exposed to an alternating magnetic field, superparamagnetic nanoparticles can elicit the required hyperthermic effect while also being excellent magnetic resonance imaging (MRI) contrast agents. Their main drawback is that they diffuse out of the area of interest in one or two days, thus preventing a continuous application during the typical several-cycle multi-week treatment. To solve this issue, our aim was to synthesise an implantable, biodegradable membrane infused with magnetite that enabled long-term treatment while having adequate MRI contrast and hyperthermic capabilities. To immobilise the nanoparticles inside the scaffold, they were synthesised inside hydrogel fibres. First, polysuccinimide (PSI) fibres were produced by electrospinning and crosslinked, and then, magnetitc iron oxide nanoparticles (MIONs) were synthesised inside and in-between the fibres of the hydrogel membranes with the well-known co-precipitation method. The attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) investigation proved the success of the chemical synthesis and the presence of iron oxide, and the superconducting quantum interference device (SQUID) study revealed their superparamagnetic property. The magnetic hyperthermia efficiency of the samples was significant. The given alternating current (AC) magnetic field could induce a temperature rise of 5 °C (from 37 °C to 42 °C) in less than 2 min even for five quick heat-cool cycles or for five consecutive days without considerable heat generation loss in the samples. Short-term (1 day and 7 day) biocompatibility, biodegradability and MRI contrast capability were investigated in vivo on Wistar rats. The results showed excellent MRI contrast and minimal acute inflammation.

15.
Cancers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454902

RESUMO

Due to its overexpression on the surface of prostate cancer (PCa) cells, the prostate stem cell antigen (PSCA) is a potential target for PCa diagnosis and therapy. Here we describe the development and functional characterization of a novel IgG4-based anti-PSCA antibody (Ab) derivative (anti-PSCA IgG4-TM) that is conjugated with the chelator DOTAGA. The anti-PSCA IgG4-TM represents a multimodal immunotheranostic compound that can be used (i) as a target module (TM) for UniCAR T cell-based immunotherapy, (ii) for diagnostic positron emission tomography (PET) imaging, and (iii) targeted alpha therapy. Cross-linkage of UniCAR T cells and PSCA-positive tumor cells via the anti-PSCA IgG4-TM results in efficient tumor cell lysis both in vitro and in vivo. After radiolabeling with 64Cu2+, the anti-PSCA IgG4-TM was successfully applied for high contrast PET imaging. In a PCa mouse model, it showed specific accumulation in PSCA-expressing tumors, while no uptake in other organs was observed. Additionally, the DOTAGA-conjugated anti-PSCA IgG4-TM was radiolabeled with 225Ac3+ and applied for targeted alpha therapy. A single injection of the 225Ac-labeled anti-PSCA IgG4-TM was able to significantly control tumor growth in experimental mice. Overall, the novel anti-PSCA IgG4-TM represents an attractive first member of a novel group of radio-/immunotheranostics that allows diagnostic imaging, endoradiotherapy, and CAR T cell immunotherapy.

16.
Foods ; 11(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35267328

RESUMO

(1) Background: Humic substances are well-known human nutritional supplement materials and they play an important performance-enhancing role as animal feed additives. For decades, ingredients of humic substances have been proven to carry potent antiviral effects against different viruses. (2) Methods: Here, the antiviral activity of a humic substance containing ascorbic acid, Se- and Zn2+ ions intended as a nutritional supplement material was investigated against SARS-CoV-2 virus B1.1.7 Variant of Concern ("Alpha Variant") in a VeroE6 cell line. (3) Results: This combination has a significant in vitro antiviral effect at a very low concentration range of its intended active ingredients. (4) Conclusions: Even picomolar concentration ranges of humic substances, Vitamin C and Zn/Se ions in the given composition, were enough to achieve 50% viral replication inhibition in the applied SARS-CoV-2 virus inhibition test.

17.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35201268

RESUMO

Microglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans. Surprisingly, the absence of microglia or blockade of microglial P2Y12 receptor (P2Y12R) substantially impairs neurovascular coupling in mice, which is reiterated by chemogenetically induced microglial dysfunction associated with impaired ATP sensitivity. Hypercapnia induces rapid microglial calcium changes, P2Y12R-mediated formation of perivascular phylopodia, and microglial adenosine production, while depletion of microglia reduces brain pH and impairs hypercapnia-induced vasodilation. Microglial actions modulate vascular cyclic GMP levels but are partially independent of nitric oxide. Finally, microglial dysfunction markedly impairs P2Y12R-mediated cerebrovascular adaptation to common carotid artery occlusion resulting in hypoperfusion. Thus, our data reveal a previously unrecognized role for microglia in CBF regulation, with broad implications for common neurological diseases.


Assuntos
Circulação Cerebrovascular/fisiologia , Microglia/fisiologia , Acoplamento Neurovascular/fisiologia , Receptores Purinérgicos/fisiologia , Adulto , Idoso , Animais , Encéfalo/fisiologia , Sinalização do Cálcio/fisiologia , Doenças das Artérias Carótidas/fisiopatologia , Potenciais Evocados/fisiologia , Feminino , Humanos , Hipercapnia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Purinérgicos P2Y12/fisiologia , Vasodilatação/fisiologia , Vibrissas/inervação
18.
Nutrients ; 14(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215560

RESUMO

DNA methylation is an epigenetic mechanism that is crucial for mammalian development and genomic stability. Aberrant DNA methylation changes have been detected not only in malignant tumor tissues; the decrease of global DNA methylation levels is also characteristic for aging. The consumption of extra virgin olive oil (EVOO) as part of a balanced diet shows preventive effects against age-related diseases and cancer. On the other hand, consuming trans fatty acids (TFA) increases the risk of cardiovascular diseases as well as cancer. The aim of the study was to investigate the LINE-1 retrotransposon (L1-RTP) DNA methylation pattern in liver, kidney, and spleen of mice as a marker of genetic instability. For that, mice were fed with EVOO or TFA and were pretreated with environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-a harmful substance known to cause L1-RTP DNA hypomethylation. Our results show that DMBA and its combination with TFA caused significant L1-RTP DNA hypomethylation compared to the control group via inhibition of DNA methyltransferase (DNMT) enzymes. EVOO had the opposite effect by significantly decreasing DMBA and DMBA + TFA-induced hypomethylation, thereby counteracting their effects.


Assuntos
Carcinógenos Ambientais , Ácidos Graxos trans , Animais , Metilação de DNA , Camundongos , Azeite de Oliva/farmacologia , Retroelementos , Ácidos Graxos trans/efeitos adversos
19.
Sci Rep ; 11(1): 24002, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907289

RESUMO

Cerenkov luminescence imaging (CLI) is a promising approach to image-guided surgery and pathological sampling. It could offer additional advantages when combined to whole-body isotope tomographies. We aimed to obtain evidence of its applicability in lymphoma patho-diagnostics, thus we decided to investigate the radiodiagnostic potential of combined PET or SPECT/CLI in an experimental, novel spontaneous high-grade B-cell lymphoma mouse model (Bc.DLFL1). We monitored the lymphoma dissemination at early stage, and at clinically relevant stages such as advanced stage and terminal stage with in vivo 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET)/magnetic resonance imaging (MRI) and 67Ga-citrate single photon emission computed tomography (SPECT)/MRI. In vivo imaging was combined with ex vivo high resolution CLI. The use of CLI with 18F-Fluorine (F-18) and 67Ga-Gallium isotopes in the selection of infiltrated lymph nodes for tumor staging and pathology was thus tested. At advanced stage, FDG PET/MRI plus ex vivo CLI allowed accurate detection of FDG accumulation in lymphoma-infiltrated tissues. At terminal stage we detected tumorous lymph nodes with SPECT/MRI and we could report in vivo detection of the Cerenkov light emission of 67Ga. CLI with 67Ga-citrate revealed lymphoma accumulation in distant lymph node locations, unnoticeable with only MRI. Flow cytometry and immunohistochemistry confirmed these imaging results. Our study promotes the combined use of PET and CLI in preclinical studies and clinical practice. Heterogeneous FDG distribution in lymph nodes, detected at sampling surgery, has implications for tissue pathology processing and it could direct therapy. The results with 67Ga also point to the opportunities to further apply suitable SPECT radiopharmaceuticals for CLI.


Assuntos
Fluordesoxiglucose F18/farmacologia , Radioisótopos de Gálio/farmacologia , Medições Luminescentes , Linfoma/diagnóstico por imagem , Neoplasias Experimentais/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Camundongos , Camundongos Endogâmicos BALB C
20.
Nanomaterials (Basel) ; 11(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835918

RESUMO

This study reports the synthesis of silver nanoparticles using amino acid L-histidine as a reducing and capping agent as an eco-friendly approach. Fabricated L-histidine-capped silver nanoparticles (L-HAgNPs) were characterized by spectroscopic and microscopic studies. Spherical shaped L-HAgNPs were synthesized with a particle size of 47.43 ± 19.83 nm and zeta potential of -20.5 ± 0.95 mV. Results of the anticancer potential of L-HAgNPs showed antiproliferative effect against SiHa cells in a dose-dependent manner with an IC50 value of 18.25 ± 0.36 µg/mL. Fluorescent microscopic analysis revealed L-HAgNPs induced reactive oxygen species (ROS) mediated mitochondrial dysfunction, leading to activation of apoptotic pathway and DNA damage eventually causing cell death. To conclude, L-HAgNPs can act as promising candidates for cervical cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA