Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 12(4): e1234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961539

RESUMO

The association of hormonal contraception with increased risk of inflammatory bowel disease (IBD) observed in females suggests involvement of ovarian hormones, such as estradiol, and the estrogen receptors in the progression of intestinal inflammation. Here, we investigated the effects of prophylactic SERM2 and estradiol supplementation in dextran sulfate sodium-induced colitis using mice with intact ovaries and ovariectomized (OVX) female mice. We found that graded colitis score was threefold reduced in the OVX mice, compared to mice with intact ovaries. Estradiol supplementation, however, aggravated the colitis in OVX mice, increasing the colitis score to a similar level than what was observed in the intact mice. Further, we observed that immune infiltration and gene expression of inflammatory interleukins Il1b, Il6, and Il17a were up to 200-fold increased in estradiol supplemented OVX colitis mice, while a mild but consistent decrease was observed by SERM2 treatment in intact animals. Additionally, cyclo-oxygenase 2 induction was increased in the colon of colitis mice, in correlation with increased serum estradiol levels. Measured antagonist properties of SERM2, together with the other results presented here, indicates an exaggerating role of ERα signaling in colitis. Our results contribute to the knowledge of ovarian hormone effects in colitis and encourage further research on the potential use of ER antagonists in the colon, in order to alleviate inflammation.


Assuntos
Colite , Sulfato de Dextrana , Estradiol , Receptor alfa de Estrogênio , Ovariectomia , Animais , Feminino , Receptor alfa de Estrogênio/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite/tratamento farmacológico , Camundongos , Estradiol/farmacologia , Estradiol/sangue , Camundongos Endogâmicos C57BL , Estrogênios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Interleucina-17/metabolismo , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Interleucina-6/metabolismo , Interleucina-1beta/metabolismo
2.
FASEB J ; 38(13): e23775, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38967223

RESUMO

Inflammatory bowel disease (IBD) is a chronic disease of the gastrointestinal tract affecting millions of people. Here, we investigated the expression and functions of poly(ADP-ribose) polymerase 14 (Parp14), an important regulatory protein in immune cells, with an IBD patient cohort as well as two mouse colitis models, that is, IBD-mimicking oral dextran sulfate sodium (DSS) exposure and oral Salmonella infection. Parp14 was expressed in the human colon by cells in the lamina propria, but, in particular, by the epithelial cells with a granular staining pattern in the cytosol. The same expression pattern was evidenced in both mouse models. Parp14-deficiency caused increased rectal bleeding as well as stronger epithelial erosion, Goblet cell loss, and immune cell infiltration in DSS-exposed mice. The absence of Parp14 did not affect the mouse colon bacterial microbiota. Also, the colon leukocyte populations of Parp14-deficient mice were normal. In contrast, bulk tissue RNA-Seq demonstrated that the colon transcriptomes of Parp14-deficient mice were dominated by abnormalities in inflammation and infection responses both prior and after the DSS exposure. Overall, the data indicate that Parp14 has an important role in the maintenance of colon epithelial barrier integrity. The prognostic and predictive biomarker potential of Parp14 in IBD merits further investigation.


Assuntos
Colite , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Poli(ADP-Ribose) Polimerases , Animais , Camundongos , Colite/genética , Colite/induzido quimicamente , Colite/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/deficiência , Humanos , Sulfato de Dextrana/toxicidade , Camundongos Knockout , Colo/patologia , Colo/metabolismo , Masculino , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/metabolismo , Feminino , Microbioma Gastrointestinal
3.
Sci Rep ; 13(1): 20587, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996563

RESUMO

Different biomaterials have been clinically used as bone filling materials, although the mechanisms behind the biological effects are incompletely understood. To address this, we compared the effects of five different biomaterials: two bioactive glasses (45S5 and S53P4), hydroxyapatite (HAP), carbonated apatite (CAP), and alumina on the in vitro migration and viability of pre-osteoblastic cells. In addition, we studied the effects of biomaterials' calcium release on cell migration, viability and differentiation. We found differences between the materials as the bioactive glasses promoted rapid pre-osteoblastic cell migration. In contrast, CAP decreased cell migration, which was also associated with lower activity of migration related kinases. Bioactive glasses released significant amounts of calcium into the media, while CAP decreased the calcium concentration. The response of cells to calcium was mechanistically studied by blocking calcium sensing receptor (CaSR) and ATP-gated ion channel P2X7, but this had no effect on cell migration. Surprisingly, HAP and CAP initially decreased cell viability. In summary, bioactive glasses 45S5 and S53P4 had significant and long-lasting effects on the pre-osteoblastic cell migration, which could be related to the observed calcium dissolution. Additionally, bioactive glasses had no negative effects on cell viability, which was observed with HAP and CAP.


Assuntos
Cálcio , Durapatita , Durapatita/farmacologia , Materiais Biocompatíveis , Vidro , Apatitas , Cálcio da Dieta , Movimento Celular
4.
Front Immunol ; 14: 1179022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533856

RESUMO

Introduction: Bisphosphonates (BPs) are bone-protecting osteoclast inhibitors, typically used in the treatment of osteoporosis and skeletal complications of malignancies. When given in the adjuvant setting, these drugs may also prevent relapses and prolong overall survival in early breast cancer (EBC), specifically among postmenopausal patients. Because of these findings, adjuvant nitrogen-containing BPs (N-BPs), such as zoledronate (ZOL), are now the standard of care for high-risk EBC patients, but there are no benefit-associated biomarkers, and the efficacy remains low. BPs have been demonstrated to possess anti-tumor activities, but the mechanisms by which they provide the beneficial effects in EBC are not known. Methods: We used stably transfected 4T1 breast cancer cells together with suppression of CD73 (sh-CD73) or control cells (sh-NT). We compared ZOL effects on tumor growth and infiltrating lymphocytes (TILs) into tumors and lung metastases using two mouse models. B cell depletion was performed using anti-CD20 antibody. Results: Sh-CD73 4T1 cells were significantly more sensitive to the growth inhibitory effects of n-BPs in vitro. However, while ZOL-induced growth inhibition was similar between the tumor groups in vivo, ZOL enhanced B and T lymphocyte infiltration into the orthotopic tumors with down-regulated CD73. A similar trend was detected in lung metastases. ZOL-induced tumor growth inhibition was found to be augmented with B cell depletion in sh-NT tumors, but not in sh-CD73 tumors. As an internal control, ZOL effects on bone were similar in mice bearing both tumor groups. Discussion: Taken together, these results indicate that ZOL modifies TILs in breast cancer, both in primary tumors and metastases. Our results further demonstrate that B cells may counteract the growth inhibitory effects of ZOL. However, all ZOL-induced TIL effects may be influenced by immunomodulatory characteristics of the tumor.


Assuntos
Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Ácido Zoledrônico/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Linfócitos T
5.
Eur J Pharm Sci ; 190: 106571, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652236

RESUMO

BACKGROUND: Tumour associated macrophages (TAMs) are important players in breast tumour progression and metastasis. Clinical and preclinical evidence suggests a role for zoledronate (ZOL) in breast cancer metastasis prevention. Further, zoledronate is able to induce inflammatory activation of monocytes and macrophages, which can be favourable in cancer treatments. The inherent bone tropism of zoledronate limits its availability in soft tissues and tumours. In this study we utilised an orthotopic murine breast cancer model to evaluate the possibility to use liposomes (EMP-LIP) to target zoledronate to tumours to modify TAM activation. METHODS: Triple-negative breast cancer 4T1 cells were inoculated in the 4th mammary fat pad of female Balb/c mice. Animals were divided according to the treatment: vehicle, ZOL, EMP-LIP and liposome encapsulated zoledronate (ZOL-LIP). Treatment was done intravenously (with tumour resection) and intraperitoneally (without tumour resection). Tumour growth was followed by bioluminescence in vivo imaging (IVIS) and calliper measurements. Tumour-infiltrating macrophages were assessed by immunohistochemical and immunofluorescence staining. Protein and RNA expression levels of inflammatory transcription factors and cytokines were measured by Western Blotting and Taqman RT-qPCR. RESULTS: Liposome encapsulated zoledronate (ZOL-LIP) treatment suppressed migration of 4T1 cell in vitro. Tumour growth and expression of the angiogenic marker CD34 were reduced upon both ZOL and ZOL-LIP treatment in vivo. Long-term ZOL-LIP treatment resulted in shift towards M1-type macrophage polarization, increased CD4 T cell infiltration and activation of NF-κB indicating changes in intratumoural inflammation, whereas ZOL treatment showed similar but non-significant trends. Moreover, ZOL-LIP had a lower bisphosphonate accumulation in bone compared to free ZOL. CONCLUSION: Results show that the decreased bisphosphonate accumulation in bone promotes the systemic anti-tumour effect of ZOL-LIP by increasing inflammatory response in TNBC tumours via M1-type macrophage activation.


Assuntos
Lipossomos , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Camundongos , Animais , Ácido Zoledrônico/farmacologia , Lipossomos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Difosfonatos/uso terapêutico , Difosfonatos/farmacologia , Macrófagos , Camundongos Endogâmicos BALB C
6.
Biomed Pharmacother ; 156: 113882, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36265308

RESUMO

Sodium glucose cotransporter 2 (SGLT2) inhibitor canagliflozin has been found to increase the risk for lower-limb amputations in type 2 diabetics about two-fold. Conversely, empagliflozin and dapagliflozin do not display a similar effect. A question arises whether the increased risk for minor amputations is associated only with canagliflozin or whether it is a class effect of SGLT2 inhibitors. Defective angiogenesis has a role in amputations. We compared the effects of empagliflozin, dapagliflozin and canagliflozin on angiogenesis in vivo using zebrafish model, and in vitro using human umbilical vein endothelial cells (HUVECs). The effects of SGLT2 inhibitors on the formation of intersegmental blood vessels (ISVs) of the zebrafish embryos were clarified. Additionally, transcriptome analysis was performed to explore whether putative angiogenesis-associated genes are differentially regulated by SGLT2 inhibitors. The effects of SGLT2 inhibitors on the viability of HUVECs were examined. We noticed that especially empagliflozin and also dapagliflozin significantly accelerated the formation of ISVs of zebrafish embryos. In contrast, canagliflozin was not able to stimulate ISV formation, and at high concentration, it was lethal to the embryos. Transcriptome analysis demonstrated that in empagliflozin-treated embryos compared to canagliflozin-treated embryos seven genes previously shown to contribute to angiogenesis were upregulated, and four downregulated. Canagliflozin at high concentrations, but not empagliflozin or dapagliflozin, decreased the viability of HUVECs and disrupted their capability to sprout. SGLT2 inhibitors differed in their effects on angiogenic processes in zebrafish embryos and on the viability of HUVECs suggesting that the risk of SGLT2 inhibitors for peripheral amputations likely differs.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Animais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Peixe-Zebra , Compostos Benzidrílicos/farmacologia , Canagliflozina/farmacologia , Células Endoteliais da Veia Umbilical Humana , Hipoglicemiantes
7.
Bone Rep ; 17: 101627, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36304905

RESUMO

Fracture healing is a complex process with multiple overlapping metabolic and differentiation phases. Small non-coding RNAs are involved in the regulation of fracture healing and their presence in circulation is under current interest due to their obvious value as potential biomarkers. Circulating microRNAs (miRNAs) have been characterized to some extent but the current knowledge on tRNA-derived small RNA fragments (tsRNAs) is relatively scarce, especially in circulation. In this study, the spectrum of circulating miRNAs and tsRNAs was analysed by next generation sequencing to show their differential expression during fracture healing in vivo. Analysed tsRNA fragments included stress-induced translation interfering tRNA fragments (tiRNAs or tRNA halves) and internal tRNA fragments (i-tRF), within the size range of 28-36 bp. To unveil the expression of these non-coding RNAs, genome-wide analysis was performed on two months old C57BL/6 mice on days 1, 5, 7, 10, and 14 (D1, D5, D7, D10, and D14) after a closed tibial fracture. Valine isoacceptor tRNA-derived Val-AAC 5'end and Val-CAC 5'end fragments were the major types of 5'end tiRNAs in circulation, comprising about 65 % of the total counts. Their expression was not affected by fracture. After a fracture, the levels of two 5'end tiRNAs Lys-TTT 5' and Lys-CTT 5' were decreased and His-GTG 5' was increased through D1-D14. The level of miR-451a was decreased on the first post-fracture day (D1), whereas miR-328-3p, miR-133a-3p, miR-375-3p, miR-423-5p, and miR-150-5p were increased post-fracture. These data provide evidence on how fracture healing could provoke systemic metabolic effects and further pinpoint the potential of small non-coding RNAs as biomarkers for tissue regeneration.

8.
Bone Rep ; 15: 101115, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34458508

RESUMO

Long-bone fracture is a common injury and its healing process at the fracture site involves several overlapping phases, including inflammation, migration of mesenchymal progenitors into the fracture site, endochondral ossification, angiogenesis and finally bone remodelling. Increasing evidence shows that small noncoding RNAs are important regulators of chondrogenesis, osteogenesis and fracture healing. MicroRNAs are small single-stranded, non-coding RNA-molecules intervening in most physiological and biological processes, including fracture healing. Angiogenin-cleaved 5' tRNA halves, also called as tiRNAs (stress-induced RNAs) have been shown to repress protein translation. In order to gain further understanding on the role of small noncoding RNAs in fracture healing, genome wide expression profiles of tiRNAs, miRNAs and mRNAs were followed up to 14 days after fracture in callus tissue of an in vivo mouse model with closed tibial fracture and, compared to intact bone and articular cartilage at 2 months of age. Total tiRNA expression level in cartilage was only approximately one third of that observed in control D0 bone. In callus tissue, 11 mature 5'end tiRNAs out of 191 tiRNAs were highly expressed, and seven of them were differentially expressed during fracture healing. When comparing the control tissues, 25 miRNAs characteristic to bone and 29 miRNAs characteristic to cartilage tissue homeostasis were identified. Further, a total of 54 out of 806 miRNAs and 5420 out of 18,700 mRNAs were differentially expressed (DE) in callus tissue during fracture healing and, in comparison to control bone. They were associated to gene ontology processes related to mesenchymal tissue development and differentiation. A total of 581 miRNA-mRNA interactions were identified for these 54 DE miRNAs by literature searches in PubMed, thereby linking by Spearman correlation analysis 14 downregulated and 28 upregulated miRNAs to 164 negatively correlating and 168 positively correlating miRNA-mRNA pairs with chondrogenic and osteogenic phases of fracture healing. These data indicated that tiRNAs and miRNAs were differentially expressed in fracture callus tissue, suggesting them important physiological functions during fracture healing. Hence, the data provided by this study may contribute to future clinical applications, such as potential use as biomarkers or as tools in the development of novel therapeutic approaches for fracture healing.

9.
Prostate ; 81(8): 452-462, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33822400

RESUMO

BACKGROUND: Prostate cancer (PC) metastasizes to the skeleton forming predominantly sclerotic lesions, and there is currently no cure for bone metastatic disease. The transcription factor signal transducer and activator of transcription 3 (STAT3) is implicated as a metastatic driver, but its potential as therapeutic target in bone metastasis has not been investigated. In this study, we evaluated for the first time a STAT3 inhibitor, Napabucasin, as a therapeutic option for bone metastatic PC. METHODS: Effects of STAT3 inhibitors, Stattic and Napabucasin, on metastatic potential in PC cells were studied in vitro by assessment of migration capacity, self-renewal potential, and tumorsphere formation. For evaluation of the role of STAT3 in initial skeletal establishment of PC cells as well as in progressed castration-resistant PC (CRPC) in bone, human VCaP prostate cancer cells were inoculated in the tibia of mice which subsequently were treated with the STAT3 inhibitor Napabucasin. Bone specimens were analyzed using computed tomography (CT), immunohistochemistry, and quantitative polymerase chain reaction. RESULTS: The small molecule STAT3 inhibitors Stattic and Napabucasin both effectively impaired metastatic potential of PC cells in vitro. Furthermore, treatment with Napabucasin prevented metastatic establishment in tibial bones in vivo and thereby also the tumor-induced sclerotic bone response seen in vehicle-treated VCaP xenografts. In addition, treatment with Napabucasin of established bone CRPC significantly decreased both tumor burden and tumor-induced trabecular bone volume compared with effects seen in vehicle-treated animals. Anti-mitotic effects were confirmed by decreased Ki67 staining in Napabucasin-treated xenografts compared with vehicle-treated xenografts. Alterations of gene expression in the femoral bone marrow (BM) niche toward the maintenance of hematopoietic stem cells and the myeloid lineage were demonstrated by quantitative real-time polymerase chain reaction and were further reflected by a substantial increase in the number of erythrocytes in BM of Napabucasin-treated mice. Furthermore, a unique pattern of STAT3 phosphorylation in osteoblasts/stromal cells surrounding the areas of tumor cells was demonstrated immunohistochemically in bone xenograft models using several different PC cell lines. CONCLUSION: Inhibition of STAT3 activity disrupts the bone metastatic niche and targets both the skeletal establishment of PC and advanced bone metastatic CRPC in mice, suggesting STAT3 as a candidate for molecular targeted therapies of skeletal metastatic disease.


Assuntos
Benzofuranos/farmacologia , Neoplasias Ósseas/secundário , Proliferação de Células/efeitos dos fármacos , Óxidos S-Cíclicos/farmacologia , Naftoquinonas/farmacologia , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Tíbia/patologia , Animais , Linhagem Celular Tumoral , Masculino , Camundongos , Tíbia/efeitos dos fármacos
10.
J Tissue Eng Regen Med ; 14(8): 1157-1168, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32415757

RESUMO

Material-induced ossification is suggested as a suitable approach to heal large bone defects. Fiber-reinforced composite-bioactive glasses (FRC-BGs) display properties that could enhance the ossification of calvarial defects. Here, we analyzed the healing processes of a FRC-BG implant in vivo from the perspective of material-induced ossification. Histological analysis of the implant, which was removed 5 months after insertion, showed the formation of viable, noninflammatory mesenchymal tissue with newly-formed mineralized woven bone, as well as nonmineralized connective tissue with capillaries and larger blood vessels. The presence of osteocytes was detected within the newly generated bone matrix. To expand our understanding on the osteogenic properties of FRC-BG, we cultured human adipose tissue-derived mesenchymal stromal cells (AD-MSCs) in the presence of two different BGs (45S5 and S53P4) and Al2 O3 control. AD-MSCs grew and proliferated on all the scaffolds tested, as well as secreted abundant extracellular matrix, when osteogenic differentiation was appropriately stimulated. 45S5 and S53P4 induced enhanced expression of COL2A1, COL10A1, COL5A1 collagen subunits, and pro-osteogenic genes BMP2 and BMP4. The concomitant downregulation of BMP3 was also detected. Our findings show that FRC-BG can support the vascularization of the implant and the formation of abundant connective tissue in vivo. Specifically, BG 45S5 and BG S53P4 are suited to evoke the osteogenic potential of host mesenchymal stromal cells. In conclusion, FRC-BG implant demonstrated material-induced ossification both in vitro and in vivo.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Humanos , Masculino , Pessoa de Meia-Idade , Crânio/lesões , Crânio/metabolismo
11.
Int J Mol Sci ; 20(12)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226730

RESUMO

Estrogen-receptor-mediated signaling has been suggested to decrease the inflammatory response in monocyte macrophages. Previously, we showed that a novel selective estrogen receptor modulator (SERM2) promotes anti-inflammatory phenotype of monocytes in vitro. In this study, we demonstrate the potential of SERM2 in amelioration of colitis. We utilized a dextran sodium sulfate (DSS)-induced colitis model in FVB/n mice to demonstrate the effects of orally administered SERM2 on the clinical status of the mice and the histopathological changes in the colon, as well as proportion of Mrc-1 positive macrophages. SERM2 nuclear receptor affinities were measured by radioligand binding assays. Orally administered, this compound significantly alleviated DSS-induced colitis in male mice and induced local estrogen receptor activation in the inflamed colon, as well as promoting anti-inflammatory cytokine expression and infiltration of anti-inflammatory monocytes. We show that this novel drug candidate has an affinity to estrogen receptors α and ß and progesterone receptors, but not to glucocorticoid receptor, thus expressing unique binding properties compared to other sex steroid receptor ligands. These results indicate that novel drug candidates to alleviate inflammatory conditions of the colon could be found among sex steroid receptor activating compounds.


Assuntos
Colite/tratamento farmacológico , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Animais , Colite/induzido quimicamente , Colite/patologia , Colo/efeitos dos fármacos , Colo/patologia , Citocinas/análise , Sulfato de Dextrana , Modelos Animais de Doenças , Masculino , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/patologia
12.
Inflammation ; 41(4): 1157-1171, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29574654

RESUMO

Signaling via estrogen receptors (ER) is recognized as an essential part of the immune regulation, and ER-mediated signaling is involved in autoimmune reactions. Especially ERα activation in immune cells has been suggested to skew cytokine production toward Th2/M2-type mediators, which can have protective effect on inflammatory diseases and reduce Th1 and Th17 responses. These effects are caused by increased alternative activation of macrophages and changes in the activation of different T cell populations. In humans, hormonal status has been shown to have a major impact on several inflammatory diseases. Selective estrogen receptor modulators (SERMs) are ER ligands that regulate ER actions in a tissue-specific manner mostly lacking the adverse effects of steroid hormones. The impact of SERMs on the immune system is less studied, but it is suggested that certain SERMs may also produce immunoprotective effects. Here, we show that two novel SERMs and raloxifene affect immune cells by promoting M2 macrophage phenotype, alleviating NFκB activity, inhibiting T cell proliferation, and stimulating the production of anti-inflammatory compounds such as IL10 and IL1 receptor antagonist. Thus, these compounds have high potency as drug candidates against autoimmune diseases.


Assuntos
Inflamação/tratamento farmacológico , Receptores de Lipopolissacarídeos/análise , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adulto , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Macrófagos/efeitos dos fármacos , Pessoa de Meia-Idade , NF-kappa B/efeitos dos fármacos , Cloridrato de Raloxifeno/farmacologia , Células Th2 , Adulto Jovem
13.
Bone ; 106: 139-147, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29066312

RESUMO

The RNAse III enzyme Dicer plays a major role in the processing of microRNAs from large pre-miRNAs. Dicer1 processed microRNAs are known to play a comprehensive role in osteoblast differentiation, bone remodeling and skeletal disorders. Targeted deletion of Dicer1 in osteo-progenitor cells is deleterious to fetal survival whereas targeted deletion in mature osteoblasts leads to an increase in bone mass. To address the role of Dicer1 in post-natal skeletal homeostasis, we generated a pre-osteoblast specific Dicer1 knockout model employing Tamoxifen controllable Cre allele, enabling us, via tamoxifen administration, to time-controllably ablate Dicer1 gene expression in osterix expressing bone forming cells in post-natal mice. Inactivation of Dicer1 in osterix positive bone forming cells led to striking dysregulation of cortical bone formation in pre-pubertal as well as adult mice. Cortical bone thickness was found to be significantly decreased in the Cre+ femora of both young and adult mice. Further, biomechanical testing experiments showed increased ductility, reduced stiffness and altered load at upper yield among the Cre+ tibiae. Our results suggest that Dicer1 processed microRNAs might play an important role in the regulation of post-natal cortical bone formation.


Assuntos
Osso Cortical/metabolismo , RNA Helicases DEAD-box/metabolismo , Ribonuclease III/metabolismo , Fator de Transcrição Sp7/metabolismo , Animais , Densidade Óssea/fisiologia , Remodelação Óssea/genética , Remodelação Óssea/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Osso Cortical/citologia , RNA Helicases DEAD-box/deficiência , Feminino , Homeostase/fisiologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Ribonuclease III/deficiência , Células-Tronco/citologia , Células-Tronco/metabolismo
14.
J Pharmacol Exp Ther ; 361(3): 472-481, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28404687

RESUMO

Pain is the most unbearable symptom accompanying primary bone cancers and bone metastases. Bone resorptive disorders are often associated with hypercalcemia, contributing to the pathologic process. Nitrogen-containing bisphosphonates (NBPs) are efficiently used to treat bone cancers and metastases. Apart from their toxic effect on cancer cells, NBPs also provide analgesia via poorly understood mechanisms. We previously showed that NBPs, by inhibiting the mevalonate pathway, induced formation of novel ATP analogs such as ApppI [1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) triphosphoric acid diester], which can potentially be involved in NBP analgesia. In this study, we used the patch-clamp technique to explore the action of ApppI on native ATP-gated P2X receptors in rat sensory neurons and rat and human P2X3, P2X2, and P2X7 receptors expressed in human embryonic kidney cells. We found that although ApppI has weak agonist activity, it is a potent inhibitor of P2X3 receptors operating in the nanomolar range. The inhibitory action of ApppI was completely blocked in hypercalcemia-like conditions and was stronger in human than in rat P2X3 receptors. In contrast, P2X2 and P2X7 receptors were insensitive to ApppI, suggesting a high selectivity of ApppI for the P2X3 receptor subtype. NBP, metabolite isopentenyl pyrophosphate, and endogenous AMP did not exert any inhibitory action, indicating that only intact ApppI has inhibitory activity. Ca2+-dependent inhibition was stronger in trigeminal neurons preferentially expressing desensitizing P2X3 subunits than in nodose ganglia neurons, which also express nondesensitizing P2X2 subunits. Altogether, we characterized previously unknown purinergic mechanisms of NBP-induced metabolites and suggest ApppI as the endogenous pain inhibitor contributing to cancer treatment with NBPs.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Cálcio/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X3 , Trifosfato de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Masculino , Ratos , Ratos Wistar , Receptores Purinérgicos P2X3/fisiologia
15.
Differentiation ; 93: 50-57, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27914282

RESUMO

Fam3c, a cytokine-like protein, is a member of the Fam3 family (family with sequence similarity 3) and has been implicated to play a crucial role in Epithelial-to- mesenchymal transition (EMT) and subsequent metastasis during cancer progression. A few independent genome-wide association studies on different population cohorts predicted the gene locus of Fam3c to be associated with bone mineral density and fractures. In this study, we examined the role of Fam3c during osteoblast differentiation. Fam3c was found to be expressed during osteogenic differentiation of both primary bone marrow stromal cells and MC3T3-E1 pre-osteoblasts. In differentiating osteoblasts, knockdown of Fam3c increased alkaline phosphatase expression and activity whereas overexpression of Fam3c reduced it. Furthermore, overexpression of Fam3c caused reduction of Runx2 expression at both mRNA and protein levels. Fam3c was localized in the cytoplasm and it was not secreted outside the cell during osteoblast differentiation and therefore, may function intracellularly. Furthermore, Fam3c and TGF-ß1 were found to regulate each other reciprocally. Our findings therefore suggest a functional role of Fam3c in the regulation of osteoblast differentiation.


Assuntos
Diferenciação Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Citocinas/genética , Proteínas de Neoplasias/genética , Osteogênese/genética , Fator de Crescimento Transformador beta1/genética , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Citocinas/biossíntese , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/biossíntese , Neoplasias/genética , Neoplasias/patologia , Osteoblastos/citologia , Fator de Crescimento Transformador beta1/biossíntese
16.
J Clin Endocrinol Metab ; 102(2): 535-544, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27732335

RESUMO

Context: We previously identified 2 Finnish families with dominantly inherited, low-turnover osteoporosis caused by mutations in WNT1 or PLS3. Objective, Design, and Setting: This prospective, longitudinal, uncontrolled study was undertaken to evaluate whether these patients respond to teriparatide. Patients and Intervention: We recruited 6 adults (median age, 54 years); 3 with a WNT1 missense mutation, c.652T>G, and 3 with a PLS3 splice mutation, c.73-24T>A, to receive teriparatide 20 µg daily for 24 months. Five patients had previously used bisphosphonates. Main Outcome Measures: Outcome measures included lumbar spine and hip bone mineral density (BMD) by dual-energy X-ray absorptiometry, distal radius peripheral quantitative computed tomography, spinal radiography, serum bone turnover markers, paired iliac crest biopsies. Results: All patients showed increases in formation markers procollagen type 1 amino-terminal propeptide (90% to 398%) and osteocalcin (50% to 280%) and in resorption markers cross-linked C-terminal telopeptide of type I collagen (58% to 457%) and tartrate-resistant acid phosphatase 5b (20% to 68%) in first 6 months. Lumbar spine BMD increased 5.2% to 7.9% in 5 patients and femoral neck BMD 2.6% to 7.8% in 4 patients in 24 months. Distal radius cortical volumetric BMD decreased 5.4% to 26.1%. In histomorphometric analyses, osteoid indices increased more consistently in patients with WNT1 vs PLS3 mutation. Eroded surface decreased 44% to 100% in all patients. Adipocyte number increased in 5 patients studied. Conclusions: Patients with WNT1 or PLS3 mutation-related osteoporosis responded to teriparatide treatment. Future studies are needed to evaluate whether observed changes translate to fracture resistance.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Densidade Óssea , Remodelação Óssea , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Osteoporose/tratamento farmacológico , Osteoporose/genética , Teriparatida/farmacologia , Proteína Wnt1/genética , Absorciometria de Fóton , Idade de Início , Idoso , Conservadores da Densidade Óssea/administração & dosagem , Difosfonatos/uso terapêutico , Feminino , Humanos , Vértebras Lombares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Mutação , Mutação de Sentido Incorreto , Osteoporose/sangue , Osteoporose/diagnóstico por imagem , Avaliação de Resultados em Cuidados de Saúde , Ossos Pélvicos/diagnóstico por imagem , Projetos Piloto , Estudos Prospectivos , Rádio (Anatomia)/diagnóstico por imagem , Teriparatida/administração & dosagem , Tomografia Computadorizada por Raios X
17.
J Bone Oncol ; 5(3): 135-138, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27761375

RESUMO

This overview addresses the recent research developments in the role of tumour-associated macrophages (TAM) in bone metastasis biology and management of breast and prostate cancer as well as in primary and lung metastatic osteosarcoma. Immunosuppressive M2-type TAMs have been shown to associate with poor prognosis. Throughout their life cycle, macrophages (Macs) can adapt to environmental cues and influence the surroundings by secreting different cytokines and enzymes crucial to matrix remodelling, infection fighting, immune regulation and/or inflammation. In general terms, there is a broad and complex spectrum of Mac polarization statuses from M1 (classically activated/inflammatory) to M2 (alternatively activated/wound healing/immune regulating) Macs. Often the activation status of TAMs resembles more the M2-type. Considering the physiological functions of M2 Macs, it is no surprise that TAMs appear to have a role in metastasis, participating in almost every step of the metastatic cascade, which we review and explore in selected bone tropic cancers.

18.
J Immunol ; 197(8): 3059-3068, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27619996

RESUMO

Human Vγ9Vδ2 T cells recognize in a butyrophilin 3A/CD277-dependent way microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) or endogenous pyrophosphates (isopentenyl pyrophosphate [IPP]). Nitrogen-bisphosphonates such as zoledronic acid (ZOL) trigger selective γδ T cell activation because they stimulate IPP production in monocytes by inhibiting the mevalonate pathway downstream of IPP synthesis. We performed a comparative analysis of the capacity of purified monocytes, neutrophils, and CD4 T cells to serve as accessory cells for Vγ9Vδ2 T cell activation in response to three selective but mechanistically distinct stimuli (ZOL, HMBPP, agonistic anti-CD277 mAb). Only monocytes supported γδ T cell expansion in response to all three stimuli, whereas both neutrophils and CD4 T cells presented HMBPP but failed to induce γδ T cell expansion in the presence of ZOL or anti-CD277 mAb. Preincubation of accessory cells with the respective stimuli revealed potent γδ T cell-stimulating activity of ZOL- or anti-CD277 mAb-pretreated monocytes, but not neutrophils. In comparison with monocytes, ZOL-pretreated neutrophils produced little, if any, IPP and expressed much lower levels of farnesyl pyrophosphate synthase. Exogenous IL-18 enhanced the γδ T cell expansion with all three stimuli, remarkably also in response to CD4 T cells and neutrophils preincubated with anti-CD277 mAb or HMBPP. Our study uncovers unexpected differences between monocytes and neutrophils in their accessory function for human γδ T cells and underscores the important role of IL-18 in driving γδ T cell expansion. These results may have implications for the design of γδ T cell-based immunotherapeutic strategies.


Assuntos
Antígenos CD/metabolismo , Butirofilinas/metabolismo , Linfócitos T CD4-Positivos/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Linfócitos T/imunologia , Anticorpos Bloqueadores/imunologia , Antígenos CD/imunologia , Butirofilinas/imunologia , Células Cultivadas , Difosfonatos/imunologia , Geraniltranstransferase/metabolismo , Hemiterpenos/imunologia , Humanos , Imidazóis/imunologia , Interleucina-18/metabolismo , Ativação Linfocitária , Ácido Mevalônico/metabolismo , Organofosfatos/imunologia , Compostos Organofosforados/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Ácido Zoledrônico
19.
Bonekey Rep ; 5: 787, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27087939

RESUMO

Fam3c, a cytokine-like growth factor, has been suggested to have a role in epithelial-to-mesenchymal transition (EMT), tumor growth and metastasis. A single-nucleotide polymorphism affecting bone mineral density has been found in the first intron of the Fam3c gene in a study analyzing an Asian population cohort. Other independent studies on different population cohorts have found the fam3c locus to be associated with bone mineral density and fractures. In order to investigate the role of Fam3c in bone biology, we have generated a Fam3c knock-out (KO) mouse strain. The Fam3c KO mice were found to have normal appearance, behavior and fertility, but small changes in bone morphology and content were also observed. Micro-CT analysis of tibiae of the female mice revealed decreased number of trabeculae. In male mice the changes in the bone phenotype were smaller, but hematological changes were observed. Furthermore, there was a negative correlation between body weight and tibial trabecular and cortical bone volume in the male KO mice. There was a small increase in cortical bone mineral density, but in the lateral direction of tibiae the breaking strength was reduced. Fam3c KO bone marrow cells showed accelerated osteogenic differentiation and mineralization in vitro. The reduced number of bone trabeculae in Fam3c KO mice and the stimulated osteogenic differentiation indicate a role for Fam3c in osteoblast differentiation and bone homeostasis.

20.
Eur J Pharm Sci ; 86: 58-66, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-26957415

RESUMO

PURPOSE: We have examined the uptake routes by which breast cancer cells internalize different formulations of nitrogen containing bisphosphonates (N-BPs). METHODS: Cell viability was assessed with the tetrazolium colorimetric test (MTT assay) after treatment with different N-BP formulations in the presence or absence of inhibitors for different endocytosis mechanisms. Intracellular formation of isopentenyl pyrophosphate (IPP) and triphosphoric acid 1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester (ApppI), were quantified with mass spectrometry (ES-LTQ-MS) as surrogate markers for N-BP efficacy. Direct quantification intracellular [(14)C]-labeled zoledronic acid was done with liquid scintillation counting. RESULTS: The main uptake route for all the different formulations of nitrogen containing bisphosphonates was shown to be dynamin dependent endocytosis, which was significantly enhanced with calcium. This uptake mechanism was mostly caveolin and clathrin independent in MCF7 cells, but more clathrin dependent in T47D cells. Liposome encapsulation of the drug shifted the uptake mechanism to be more dependent on caveolin in both the cell lines. The cytotoxicity of N-BPs and the concentrations of formed intracellular ApppI and IPP were significantly increased by calcium chelation and liposome encapsulation, the latter being the most potent formulation. CONCLUSION: Nitrogen containing bisphosphonates require active endocytosis for cellular uptake and in the breast cancer cells the mechanism is uniformly dynamin dependent for all the formulations tested. This differs e.g. from the previous observations on macrophages, which mostly utilize macropinocytosis. Liposomal formulation was found to prolong the duration of the drug effect in cells.


Assuntos
Neoplasias da Mama/metabolismo , Difosfonatos/administração & dosagem , Imidazóis/administração & dosagem , Ácido Risedrônico/administração & dosagem , Cálcio/química , Linhagem Celular Tumoral , Difosfonatos/química , Difosfonatos/farmacologia , Endocitose , Feminino , Humanos , Imidazóis/química , Imidazóis/farmacologia , Lipossomos , Nitrogênio/química , Ácido Risedrônico/química , Ácido Risedrônico/farmacologia , Ácido Zoledrônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA