Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mol Neurodegener ; 19(1): 15, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350954

RESUMO

BACKGROUND: Amyloid and tau aggregates are considered to cause neurodegeneration and consequently cognitive decline in individuals with Alzheimer's disease (AD). Here, we explore the potential of cerebrospinal fluid (CSF) proteins to reflect AD pathology and cognitive decline, aiming to identify potential biomarkers for monitoring outcomes of disease-modifying therapies targeting these aggregates. METHOD: We used a multiplex antibody-based suspension bead array to measure the levels of 49 proteins in CSF from the Swedish GEDOC memory clinic cohort at the Karolinska University Hospital. The cohort comprised 148 amyloid- and tau-negative individuals (A-T-) and 65 amyloid- and tau-positive individuals (A+T+). An independent sample set of 26 A-T- and 26 A+T+ individuals from the Amsterdam Dementia Cohort was used for validation. The measured proteins were clustered based on their correlation to CSF amyloid beta peptides, tau and NfL levels. Further, we used support vector machine modelling to identify protein pairs, matched based on their cluster origin, that reflect AD pathology and cognitive decline with improved performance compared to single proteins. RESULTS: The protein-clustering revealed 11 proteins strongly correlated to t-tau and p-tau (tau-associated group), including mainly synaptic proteins previously found elevated in AD such as NRGN, GAP43 and SNCB. Another 16 proteins showed predominant correlation with Aß42 (amyloid-associated group), including PTPRN2, NCAN and CHL1. Support vector machine modelling revealed that proteins from the two groups combined in pairs discriminated A-T- from A+T+ individuals with higher accuracy compared to single proteins, as well as compared to protein pairs composed of proteins originating from the same group. Moreover, combining the proteins from different groups in ratios (tau-associated protein/amyloid-associated protein) significantly increased their correlation to cognitive decline measured with cognitive scores. The results were validated in an independent cohort. CONCLUSIONS: Combining brain-derived proteins in pairs largely enhanced their capacity to discriminate between AD pathology-affected and unaffected individuals and increased their correlation to cognitive decline, potentially due to adjustment of inter-individual variability. With these results, we highlight the potential of protein pairs to monitor neurodegeneration and thereby possibly the efficacy of AD disease-modifying therapies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Encéfalo/patologia , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
2.
Artigo em Inglês | MEDLINE | ID: mdl-37789557

RESUMO

OBJECTIVE: To describe the diagnostic and prognostic performance, and longitudinal trajectories, of potential biomarkers of neuroaxonal degeneration and neuroinflammation in amyotrophic lateral sclerosis (ALS). METHODS: This case-control study included 192 incident ALS patients, 42 ALS mimics, 114 neurological controls, and 117 healthy controls from Stockholm, Sweden. Forty-four ALS patients provided repeated measurements. We assessed biomarkers of (1)neuroaxonal degeneration: neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in cerebrospinal fluid (CSF) and NfL in serum, and (2)neuroinflammation: chitotriosidase-1 (CHIT1) and monocyte chemoattractant protein 1 (MCP-1) in CSF. To evaluate diagnostic performance, we calculated the area under the curve (AUC). To estimate prognostic performance, we applied quantile regression and Cox regression. We used linear regression models with robust standard errors to assess temporal changes over time. RESULTS: Neurofilaments performed better at differentiating ALS patients from mimics (AUC: pNfH 0.92, CSF NfL 0.86, serum NfL 0.91) than neuroinflammatory biomarkers (AUC: CHIT1 0.71, MCP-1 0.56). Combining biomarkers did not improve diagnostic performance. Similarly, neurofilaments performed better than neuroinflammatory biomarkers at predicting functional decline and survival. The stratified analysis revealed differences according to the site of onset: in bulbar patients, neurofilaments and CHIT1 performed worse at predicting survival and correlations were lower between biomarkers. Finally, in bulbar patients, neurofilaments and CHIT1 increased longitudinally but were stable in spinal patients. CONCLUSIONS: Biomarkers of neuroaxonal degeneration displayed better diagnostic and prognostic value compared with neuroinflammatory biomarkers. However, in contrast to spinal patients, in bulbar patients neurofilaments and CHIT1 performed worse at predicting survival and seemed to increase over time.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Doenças Neuroinflamatórias , Estudos de Casos e Controles , Biomarcadores , Prognóstico , Proteínas de Neurofilamentos/líquido cefalorraquidiano
3.
Mol Neurodegener ; 18(1): 85, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968725

RESUMO

BACKGROUND: Plasma biomarkers reflecting the pathology of frontotemporal dementia would add significant value to clinical practice, to the design and implementation of treatment trials as well as our understanding of disease mechanisms. The aim of this study was to explore the levels of multiple plasma proteins in individuals from families with genetic frontotemporal dementia. METHODS: Blood samples from 693 participants in the GENetic Frontotemporal Dementia Initiative study were analysed using a multiplexed antibody array targeting 158 proteins. RESULTS: We found 13 elevated proteins in symptomatic mutation carriers, when comparing plasma levels from people diagnosed with genetic FTD to healthy non-mutation controls and 10 proteins that were elevated compared to presymptomatic mutation carriers. CONCLUSION: We identified plasma proteins with altered levels in symptomatic mutation carriers compared to non-carrier controls as well as to presymptomatic mutation carriers. Further investigations are needed to elucidate their potential as fluid biomarkers of the disease process.


Assuntos
Demência Frontotemporal , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Mutação/genética , Proteína C9orf72/genética , Progranulinas/genética , Proteínas tau/genética , Biomarcadores
4.
Mol Cell Proteomics ; 22(10): 100629, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37557955

RESUMO

Neurodegenerative dementias are progressive diseases that cause neuronal network breakdown in different brain regions often because of accumulation of misfolded proteins in the brain extracellular matrix, such as amyloids or inside neurons or other cell types of the brain. Several diagnostic protein biomarkers in body fluids are being used and implemented, such as for Alzheimer's disease. However, there is still a lack of biomarkers for co-pathologies and other causes of dementia. Such biofluid-based biomarkers enable precision medicine approaches for diagnosis and treatment, allow to learn more about underlying disease processes, and facilitate the development of patient inclusion and evaluation tools in clinical trials. When designing studies to discover novel biofluid-based biomarkers, choice of technology is an important starting point. But there are so many technologies to choose among. To address this, we here review the technologies that are currently available in research settings and, in some cases, in clinical laboratory practice. This presents a form of lexicon on each technology addressing its use in research and clinics, its strengths and limitations, and a future perspective.


Assuntos
Doença de Alzheimer , Humanos , Encéfalo , Biomarcadores , Neurônios , Medicina de Precisão , Peptídeos beta-Amiloides
5.
Microbiome ; 11(1): 67, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004130

RESUMO

BACKGROUND: The majority of studies characterizing female genital tract microbiota have focused on luminal organisms, while the presence and impact of tissue-adherent ectocervical microbiota remain incompletely understood. Studies of luminal and tissue-associated bacteria in the gastrointestinal tract suggest that these communities may have distinct roles in health and disease. Here, we performed a multi-omics characterization of paired luminal and tissue samples collected from a cohort of Kenyan female sex workers. RESULTS: We identified a tissue-adherent bacterial microbiome, with a higher alpha diversity than the luminal microbiome, in which dominant genera overall included Gardnerella and Lactobacillus, followed by Prevotella, Atopobium, and Sneathia. About half of the L. iners-dominated luminal samples had a corresponding Gardnerella-dominated tissue microbiome. Broadly, the tissue-adherent microbiome was associated with fewer differentially expressed host genes than the luminal microbiome. Gene set enrichment analysis revealed that L. crispatus-dominated tissue-adherent communities were associated with protein translation and antimicrobial activity, whereas a highly diverse microbial community was associated with epithelial remodeling and pro-inflammatory pathways. Tissue-adherent communities dominated by L. iners and Gardnerella were associated with lower host transcriptional activity. Tissue-adherent microbiomes dominated by Lactobacillus and Gardnerella correlated with host protein profiles associated with epithelial barrier stability, although with a more pro-inflammatory profile for the Gardnerella-dominated microbiome group. Tissue samples with a highly diverse composition had a protein profile representing cell proliferation and pro-inflammatory activity. CONCLUSION: We identified ectocervical tissue-adherent bacterial communities in all study participants of a female sex worker cohort. These communities were distinct from cervicovaginal luminal microbiota in a significant proportion of individuals. We further revealed that bacterial communities at both sites correlated with distinct host gene expression and protein levels. The tissue-adherent bacterial community could possibly act as a reservoir that seed the lumen with less optimal, non-Lactobacillus, bacteria. Video Abstract.


Assuntos
Microbiota , Profissionais do Sexo , Feminino , Humanos , Vagina/microbiologia , Quênia , Microbiota/genética , Bactérias/genética , Lactobacillus/genética , RNA Ribossômico 16S/genética , Expressão Gênica
6.
Methods Mol Biol ; 2628: 535-553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781805

RESUMO

The detection of antibody responses using serological tests provides means to diagnose infections, follow disease transmission, and monitor vaccination responses. The coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, highlighted the need for rapid development of robust and reliable serological tests to follow disease spreading. Moreover, the rise of SARS-CoV-2 variants emphasized the need to monitor their transmission and prevalence in the population. For this reason, multiplex and flexible serological assays are needed to allow for rapid inclusion of antigens representing new variants as soon as they appear. In this chapter, we describe the generation and application of a multiplex serological test, based on bead array technology, to detect anti-SARS-CoV-2 antibodies in a high-throughput manner, using only a few microliters of sample. This method is currently expanding to include a multi-disease antigen panel that will allow parallel detection of antibodies towards several infectious agents.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Testes Sorológicos/métodos , Teste para COVID-19 , Anticorpos Antivirais , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus
8.
PLoS Pathog ; 18(5): e1010494, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533147

RESUMO

Depot medroxyprogesterone acetate (DMPA) is an injectable hormonal contraceptive used by millions of women worldwide. However, experimental studies have associated DMPA use with genital epithelial barrier disruption and mucosal influx of human immunodeficiency virus (HIV) target cells. We explored the underlying molecular mechanisms of these findings. Ectocervical biopsies and cervicovaginal lavage (CVL) specimens were collected from HIV-seronegative Kenyan sex workers using DMPA (n = 32) or regularly cycling controls (n = 64). Tissue samples were assessed by RNA-sequencing and quantitative imaging analysis, whereas protein levels were measured in CVL samples. The results suggested a DMPA-associated upregulation of genes involved in immune regulation, including genes associated with cytokine-mediated signaling and neutrophil-mediated immunity. A transcription factor analysis further revealed DMPA-associated upregulation of RELA and NFKB1 which are involved in several immune activation pathways. Several genes significantly downregulated in the DMPA versus the control group were involved in epithelial structure and function, including genes encoding keratins, small proline-rich proteins, and cell-cell adhesion proteins. Pathway analyses indicated DMPA use was associated with immune activation and suppression of epithelium development, including keratinization and cornification processes. The cervicovaginal microbiome composition (Lactobacillus dominant and non-Lactobacillus dominant) had no overall interactional impact on the DMPA associated tissue gene expression. Imaging analysis verified that DMPA use was associated with an impaired epithelial layer as illustrated by staining for the selected epithelial junction proteins E-cadherin, desmoglein-1 and claudin-1. Additional staining for CD4+ cells revealed a more superficial location of these cells in the ectocervical epithelium of DMPA users versus controls. Altered protein levels of SERPINB1 and ITIH2 were further observed in the DMPA group. Identification of specific impaired epithelial barrier structures at the gene expression level, which were verified at the functional level by tissue imaging analysis, illustrates mechanisms by which DMPA adversely may affect the integrity of the genital mucosa.


Assuntos
Anticoncepcionais Femininos , Infecções por HIV , Serpinas , Colo do Útero , Anticoncepcionais Femininos/efeitos adversos , Feminino , Humanos , Quênia , Acetato de Medroxiprogesterona/efeitos adversos
9.
Immun Inflamm Dis ; 10(4): e595, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35349756

RESUMO

BACKGROUND: Cellular immune memory responses post coronavirus disease 2019 (COVID-19) have been difficult to assess due to the risks of contaminating the immune response readout with memory responses stemming from previous exposure to endemic coronaviruses. The work herein presents a large-scale long-term follow-up study investigating the correlation between symptomology and cellular immune responses four to five months post seroconversion based on a unique severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific peptide pool that contains no overlapping peptides with endemic human coronaviruses. METHODS: Peptide stimulated memory T cell responses were assessed with dual interferon-gamma (IFNγ) and interleukin (IL)-2 Fluorospot. Serological analyses were performed using a multiplex antigen bead array. RESULTS: Our work demonstrates that long-term SARS-CoV-2-specific memory T cell responses feature dual IFNγ and IL-2 responses, whereas cross-reactive memory T cell responses primarily generate IFNγ in response to SARS-CoV-2 peptide stimulation. T cell responses correlated to long-term humoral immune responses. Disease severity as well as specific COVID-19 symptoms correlated with the magnitude of the SARS-CoV-2-specific memory T cell response four to five months post seroconversion. CONCLUSION: Using a large cohort and a SARS-CoV-2-specific peptide pool we were able to substantiate that initial disease severity and symptoms correlate with the magnitude of the SARS-CoV-2-specific memory T cell responses.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD4-Positivos , Seguimentos , Humanos , Imunidade Celular , Índice de Gravidade de Doença
10.
PLoS One ; 17(1): e0262169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35020778

RESUMO

Current SARS-CoV-2 serological assays generate discrepant results, and the longitudinal characteristics of antibodies targeting various antigens after asymptomatic to mild COVID-19 are yet to be established. This longitudinal cohort study including 1965 healthcare workers, of which 381 participants exhibited antibodies against the SARS-CoV-2 spike antigen at study inclusion, reveal that these antibodies remain detectable in most participants, 96%, at least four months post infection, despite having had no or mild symptoms. Virus neutralization capacity was confirmed by microneutralization assay in 91% of study participants at least four months post infection. Contrary to antibodies targeting the spike protein, antibodies against the nucleocapsid protein were only detected in 80% of previously anti-nucleocapsid IgG positive healthcare workers. Both anti-spike and anti-nucleocapsid IgG levels were significantly higher in previously hospitalized COVID-19 patients four months post infection than in healthcare workers four months post infection (p = 2*10-23 and 2*10-13 respectively). Although the magnitude of humoral response was associated with disease severity, our findings support a durable and functional humoral response after SARS-CoV-2 infection even after no or mild symptoms. We further demonstrate differences in antibody kinetics depending on the antigen, arguing against the use of the nucleocapsid protein as target antigen in population-based SARS-CoV-2 serological surveys.


Assuntos
COVID-19/patologia , Imunidade Humoral , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções Assintomáticas/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Feminino , Pessoal de Saúde , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Nucleocapsídeo/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia
11.
N Biotechnol ; 66: 46-52, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34628049

RESUMO

Highly accurate serological tests are key to assessing the prevalence of SARS-CoV-2 antibodies and the level of immunity in the population. This is important to predict the current and future status of the pandemic. With the recent emergence of new and more infectious SARS-CoV-2 variants, assays allowing for high throughput analysis of antibodies able to neutralize SARS-CoV-2 become even more important. Here, we report the development and validation of a robust, high throughput method, which enables the assessment of antibodies inhibiting the binding between the SARS-CoV-2 spike protein and angiotensin converting enzyme 2 (ACE2). The assay uses recombinantly produced spike-f and ACE2 and is performed in a bead array format, which allows analysis of up to 384 samples in parallel per instrument over seven hours, demanding only one hour of manual handling. The method is compared to a microneutralization assay utilising live SARS-CoV-2 and is shown to deliver highly correlating data. Further, a comparison with a serological method that measures all antibodies recognizing the spike protein shows that this type of assessment provides important insights into the neutralizing efficiency of the antibodies, especially for individuals with low antibody levels. This method can be an important and valuable tool for large-scale assessment of antibody-based neutralization, including neutralization of new spike variants that might emerge.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Ensaios de Triagem em Larga Escala , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/imunologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-34151677

RESUMO

Objective: To test whether high-sensitivity cardiac troponin T (hs-cTnT) could act as a diagnostic or prognostic biomarker in ALS, comparing hs-cTnT to neurofilament light (NfL). Methods: We performed a case-control study, including 150 ALS patients, 28 ALS mimics, and 108 healthy controls, and a follow-up study of the ALS patients, during 2014-2020 in Stockholm, Sweden. We compared concentrations of hs-cTnT in plasma and NfL in the cerebrospinal fluid between cases and controls. To evaluate the diagnostic performance, we calculated the area under the curve (AUC). Hazard ratios (HRs) were estimated from Cox models to assess associations between hs-cTnT and NfL at ALS diagnosis and risk of death. The longitudinal analysis measured changes of hs-cTnT and NfL since ALS diagnosis. Results: We noted higher levels of hs-cTnT in ALS patients (median: 16.5 ng/L) than in ALS mimics (11 ng/L) and healthy controls (6 ng/L). Both hs-cTnT and NfL could distinguish ALS patients from ALS mimics, with higher AUC noted for NfL (AUC 0.88; 95%CI 0.79-0.97). Disease progression correlated weakly with hs-cTnT (Pearson's r = 0.18, p = 0.04) and moderately with NfL (Pearson's r = 0.41, p < 0.001). Shorter survival was associated with higher levels of NfL at diagnosis (HR 1.08, 95%CI 1.04-1.11), but not hs-cTnT. hs-cTnT increased (12.61 ng/L per year, 95%CI 7.14-18.06) whereas NfL decreased longitudinally since ALS diagnosis. Conclusions: NfL is a stronger diagnostic and prognostic biomarker than hs-cTnT for ALS. However, hs-cTnT might constitute a disease progression biomarker as it increases longitudinally. The underlying causes for this increase need to be investigated.


Assuntos
Esclerose Lateral Amiotrófica , Troponina T , Biomarcadores , Estudos de Casos e Controles , Seguimentos , Humanos
13.
J Intern Med ; 291(1): 72-80, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459525

RESUMO

BACKGROUND: Emerging data support detectable immune responses for months after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, but it is not yet established to what degree and for how long protection against reinfection lasts. METHODS: We investigated SARS-CoV-2-specific humoral and cellular immune responses more than 8 months post-asymptomatic, mild and severe infection in a cohort of 1884 healthcare workers (HCW) and 51 hospitalized COVID-19 patients. Possible protection against SARS-CoV-2 reinfection was analyzed by a weekly 3-month polymerase chain reaction (PCR) screening of 252 HCW that had seroconverted 7 months prior to start of screening and 48 HCW that had remained seronegative at multiple time points. RESULTS: All COVID-19 patients and 96% (355/370) of HCW who were anti-spike IgG positive at inclusion remained anti-spike IgG positive at the 8-month follow-up. Circulating SARS-CoV-2-specific memory T cell responses were detected in 88% (45/51) of COVID-19 patients and in 63% (233/370) of seropositive HCW. The cumulative incidence of PCR-confirmed SARS-CoV-2 infection was 1% (3/252) among anti-spike IgG positive HCW (0.13 cases per 100 weeks at risk) compared to 23% (11/48) among anti-spike IgG negative HCW (2.78 cases per 100 weeks at risk), resulting in a protective effect of 95.2% (95% CI 81.9%-99.1%). CONCLUSIONS: The vast majority of anti-spike IgG positive individuals remain anti-spike IgG positive for at least 8 months regardless of initial COVID-19 disease severity. The presence of anti-spike IgG antibodies is associated with a substantially reduced risk of reinfection up to 9 months following asymptomatic to mild COVID-19.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/diagnóstico , COVID-19/imunologia , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/imunologia , Reinfecção , Adulto , Anticorpos Antivirais/imunologia , Infecções Assintomáticas , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Células T de Memória , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Fatores de Tempo
14.
Mol Neurodegener ; 16(1): 79, 2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838088

RESUMO

BACKGROUND: A detailed understanding of the pathological processes involved in genetic frontotemporal dementia is critical in order to provide the patients with an optimal future treatment. Protein levels in CSF have the potential to reflect different pathophysiological processes in the brain. We aimed to identify and evaluate panels of CSF proteins with potential to separate symptomatic individuals from individuals without clinical symptoms (unaffected), as well as presymptomatic individuals from mutation non-carriers. METHODS: A multiplexed antibody-based suspension bead array was used to analyse levels of 111 proteins in CSF samples from 221 individuals from families with genetic frontotemporal dementia. The data was explored using LASSO and Random forest. RESULTS: When comparing affected individuals with unaffected individuals, 14 proteins were identified as potentially important for the separation. Among these, four were identified as most important, namely neurofilament medium polypeptide (NEFM), neuronal pentraxin 2 (NPTX2), neurosecretory protein VGF (VGF) and aquaporin 4 (AQP4). The combined profile of these four proteins successfully separated the two groups, with higher levels of NEFM and AQP4 and lower levels of NPTX2 in affected compared to unaffected individuals. VGF contributed to the models, but the levels were not significantly lower in affected individuals. Next, when comparing presymptomatic GRN and C9orf72 mutation carriers in proximity to symptom onset with mutation non-carriers, six proteins were identified with a potential to contribute to a separation, including progranulin (GRN). CONCLUSION: In conclusion, we have identified several proteins with the combined potential to separate affected individuals from unaffected individuals, as well as proteins with potential to contribute to the separation between presymptomatic individuals and mutation non-carriers. Further studies are needed to continue the investigation of these proteins and their potential association to the pathophysiological mechanisms in genetic FTD.


Assuntos
Demência Frontotemporal , Biomarcadores , Encéfalo , Demência Frontotemporal/genética , Humanos , Mutação/genética , Progranulinas/genética
15.
J Proteome Res ; 20(11): 5115-5130, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34628858

RESUMO

New biomarkers of Alzheimer's disease (AD) with a diagnostic value in preclinical and prodromal stages are urgently needed. AD-related serum autoantibodies are potential candidate biomarkers. Here, we aimed at identifying AD-related serum autoantibodies using protein microarrays and mass spectrometry-based methods. To this end, an untargeted complementary screening using high-density (42,100 antigens) and low-density (384 antigens) planar protein-epitope signature tag (PrEST) arrays and an immunoprecipitation protocol coupled to mass spectrometry analysis were used for serum autoantibody profiling. From the untargeted screening phase, 377 antigens corresponding to 338 proteins were selected for validation. Out of them, IVD, CYFIP1, and ADD2 seroreactivity was validated using 128 sera from AD patients and controls by PrEST-suspension bead arrays, and ELISA or luminescence Halotag-based bead immunoassay using full-length recombinant proteins. Importantly, IVD, CYFIP1, and ADD2 showed in combination a noticeable AD diagnostic ability. Moreover, IVD protein abundance in the prefrontal cortex was significantly two-fold higher in AD patients than in controls by western blot and immunohistochemistry, whereas CYFIP1 and ADD2 were significantly down-regulated in AD patients. The panel of AD-related autoantigens identified by a comprehensive multiomics approach may provide new insights of the disease and should help in the blood-based diagnosis of Alzheimer's disease. Mass spectrometry raw data are available in the ProteomeXchange database with the access number PXD028392.


Assuntos
Doença de Alzheimer , Autoanticorpos , Autoantígenos , Biomarcadores , Humanos , Análise Serial de Proteínas/métodos
16.
iScience ; 24(9): 103078, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34490414

RESUMO

B cell depleting therapies (BCDTs) are widely used as immunomodulating agents for autoimmune diseases such as multiple sclerosis. Their possible impact on development of immunity to severe acute respiratory syndrome virus-2 (SARS-CoV-2) has raised concerns with the coronavirus disease 2019 (COVID-19) pandemic. We here evaluated the frequency of COVID-19-like symptoms and determined immunological responses in participants of an observational trial comprising several multiple sclerosis disease modulatory drugs (COMBAT-MS; NCT03193866) and in eleven patients after vaccination, with a focus on BCDT. Almost all seropositive and 17.9% of seronegative patients on BCDT, enriched for a history of COVID-19-like symptoms, developed anti-SARS-CoV-2 T cell memory, and T cells displayed functional similarity to controls producing IFN-γ and TNF. Following vaccination, vaccine-specific humoral memory was impaired, while all patients developed a specific T cell response. These results indicate that BCDTs do not abrogate SARS-CoV-2 cellular memory and provide a possible explanation as to why the majority of patients on BCDTs recover from COVID-19.

17.
Transl Psychiatry ; 11(1): 474, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518517

RESUMO

Autoimmune processes are suspected to play a role in the pathophysiology of psychotic disorders. Better understanding of the associations between auto-immunoglobulin G (IgG) repertoires and clinical features of mental illness could yield novel models of the pathophysiology of psychosis, and markers for biological patient stratification. We undertook cross-sectional detection and quantification of auto-IgGs in peripheral blood plasma of 461 people (39% females) with established psychotic disorder diagnoses. Broad screening of 24 individuals was carried out on group level in eight clinically defined groups using planar protein microarrays containing 42,100 human antigens representing 18,914 proteins. Autoantibodies indicated by broad screening and in the previous literature were measured using a 380-plex bead-based array for autoantibody profiling of all 461 individuals. Associations between autoantibody profiles and dichotomized clinical characteristics were assessed using a stepwise selection procedure. Broad screening and follow-up targeted analyses revealed highly individual autoantibody profiles. Females, and people with family histories of obesity or of psychiatric disorders other than schizophrenia had the highest overall autoantibody counts. People who had experienced subjective thought disorder and/or were treated with clozapine (trend) had the lowest overall counts. Furthermore, six autoantibodies were associated with specific psychopathology symptoms: anti-AP3B2 (persecutory delusions), anti-TDO2 (hallucinations), anti-CRYGN (initial insomnia); anti-APMAP (poor appetite), anti-OLFM1 (above-median cognitive function), and anti-WHAMMP3 (anhedonia and dysphoria). Future studies should clarify whether there are causal biological relationships, and whether autoantibodies could be used as clinical markers to inform diagnostic patient stratification and choice of treatment.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Autoanticorpos , Estudos Transversais , Delusões , Feminino , Humanos , Masculino
18.
Prev Med Rep ; 24: 101518, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34458081

RESUMO

Healthcare workers (HCWs) are a risk group for SARS-CoV-2 infection, but which healthcare work that conveys risk and to what extent such risk can be prevented is not clear. Starting on April 24th, 2020, all employees at work (n = 15,300) at the Karolinska University Hospital, Stockholm, Sweden were invited and 92% consented to participate in a SARS-CoV-2 cohort study. Complete SARS-CoV-2 serology was available for n = 12,928 employees and seroprevalences were analyzed by age, sex, profession, patient contact, and hospital department. Relative risks were estimated to examine the association between type of hospital department as a proxy for different working environment exposure and risk for seropositivity, adjusting for age, sex, sampling week, and profession. Wards that were primarily responsible for COVID-19 patients were at increased risk (adjusted OR 1.95 (95% CI 1.65-2.32) with the notable exception of the infectious diseases and intensive care units (adjusted OR 0.86 (95% CI 0.66-1.13)), that were not at increased risk despite being highly exposed. Several units with similar types of work varied greatly in seroprevalences. Among the professions examined, nurse assistants had the highest risk (adjusted OR 1.62 (95% CI 1.38-1.90)). Although healthcare workers, in particular nurse assistants, who attend to COVID-19 patients are a risk group for SARS-CoV-2 infection, several units caring for COVID-19 patients had no excess risk. Large variations in seroprevalences among similar units suggest that healthcare work-related risk of SARS-CoV-2 infection may be preventable.

19.
Clin Transl Immunology ; 10(7): e1312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295471

RESUMO

OBJECTIVE: The COVID-19 pandemic poses an immense need for accurate, sensitive and high-throughput clinical tests, and serological assays are needed for both overarching epidemiological studies and evaluating vaccines. Here, we present the development and validation of a high-throughput multiplex bead-based serological assay. METHODS: More than 100 representations of SARS-CoV-2 proteins were included for initial evaluation, including antigens produced in bacterial and mammalian hosts as well as synthetic peptides. The five best-performing antigens, three representing the spike glycoprotein and two representing the nucleocapsid protein, were further evaluated for detection of IgG antibodies in samples from 331 COVID-19 patients and convalescents, and in 2090 negative controls sampled before 2020. RESULTS: Three antigens were finally selected, represented by a soluble trimeric form and the S1-domain of the spike glycoprotein as well as by the C-terminal domain of the nucleocapsid. The sensitivity for these three antigens individually was found to be 99.7%, 99.1% and 99.7%, and the specificity was found to be 98.1%, 98.7% and 95.7%. The best assay performance was although achieved when utilising two antigens in combination, enabling a sensitivity of up to 99.7% combined with a specificity of 100%. Requiring any two of the three antigens resulted in a sensitivity of 99.7% and a specificity of 99.4%. CONCLUSION: These observations demonstrate that a serological test based on a combination of several SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay.

20.
Ann Clin Transl Neurol ; 8(7): 1456-1470, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34129723

RESUMO

OBJECTIVE: Decreased amyloid beta (Aß) 42 together with increased tau and phospho-tau in cerebrospinal fluid (CSF) is indicative of Alzheimer's disease (AD). However, the molecular pathophysiology underlying the slowly progressive cognitive decline observed in AD is not fully understood and it is not known what other CSF biomarkers may be altered in early disease stages. METHODS: We utilized an antibody-based suspension bead array to analyze levels of 216 proteins in CSF from AD patients, patients with mild cognitive impairment (MCI), and controls from two independent cohorts collected within the AETIONOMY consortium. Two additional cohorts from Sweden were used for biological verification. RESULTS: Six proteins, amphiphysin (AMPH), aquaporin 4 (AQP4), cAMP-regulated phosphoprotein 21 (ARPP21), growth-associated protein 43 (GAP43), neurofilament medium polypeptide (NEFM), and synuclein beta (SNCB) were found at increased levels in CSF from AD patients compared with controls. Next, we used CSF levels of Aß42 and tau for the stratification of the MCI patients and observed increased levels of AMPH, AQP4, ARPP21, GAP43, and SNCB in the MCI subgroups with abnormal tau levels compared with controls. Further characterization revealed strong to moderate correlations between these five proteins and tau concentrations. INTERPRETATION: In conclusion, we report six extensively replicated candidate biomarkers with the potential to reflect disease development. Continued evaluation of these proteins will determine to what extent they can aid in the discrimination of MCI patients with and without an underlying AD etiology, and if they have the potential to contribute to a better understanding of the AD continuum.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Análise Serial de Proteínas/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Aquaporina 4/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Estudos Transversais , Feminino , Proteína GAP-43/líquido cefalorraquidiano , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fosfoproteínas/líquido cefalorraquidiano , beta-Sinucleína/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA