Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 84(5): 056112, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742610

RESUMO

We propose a mounting scheme to control the displacement of a mirror (or other small object) by a cylindrical piezoelectric actuator, giving uniform response and no phase lag up to high frequencies. This requires a simple ring holder, and unmodified off-the-shelf components. In our implementation, the piezo-mirror assembly has its first mechanical resonance around 120 kHz, close to the resonance for the bare piezo. The idea is to decouple the fundamental elongation mode of the piezo-mirror assembly from the holder by side-clamping the assembly at its zero-displacement plane for this mode. The main drawback is a reduced mirror displacement, by a factor 2 in our case (mirror displacement is ~2.5 µm). Also, the mirror needs to be light with respect to the piezo: still, we use a standard half-inch mirror. The resulting system is very compact as it fits inside a 1-in. commercial steering mirror post.

2.
Opt Lett ; 33(11): 1231-3, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18516184

RESUMO

We demonstrate the possibility of measuring parts in 10(12) by volume concentrations of radicals of high atmospheric interest, such as IO or BrO, as needed for monitoring these species in the environment. We apply cavity-enhanced absorption spectroscopy in the near UV range using a frequency-doubled Ti:Sa mode-locked femtosecond laser. Efficient broadband injection of a high-finesse cavity is obtained by matching this optical frequency-comb source to the comb of cavity transmission resonances. A grating spectrograph and a detector array disperse and detect the spectrum transmitted by the cavity carrying the absorption features of intracavity molecules. Spectra recorded over ~4 nm with 10 s averaging display a noise level of 8 x 10(-10)/cm.

3.
Opt Lett ; 31(1): 86-8, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16419886

RESUMO

The initiation and propagation of a filament generated by ultrashort laser pulses in turbulent air is investigated experimentally. A filament can be generated and propagated even after the beam has propagated through strongly turbulent regions, with structure parameters C(n)2 as many as 5 orders of magnitude larger than those encountered in the usual atmospheric conditions. Moreover, the filament's position within the beam is not affected by the interaction with a turbulent region. This remarkable stability is allowed by the strong Kerr refractive-index gradients generated within the filament, which exceed the turbulence-induced refractive-index gradients by 2 orders of magnitude.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(2 Pt 2): 026611, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16196739

RESUMO

The influence of atmospheric aerosols on the filamentation patterns created by TW laser beams over 10 m propagation scales is investigated, both experimentally and numerically. From the experimental point of view, it is shown that dense fogs dissipate quasi-linearly the energy in the beam envelope and diminish the number of filaments in proportion. This number is strongly dependent on the power content of the beam. The power per filament is evaluated to about 5 critical powers for self-focusing in air. From the theoretical point of view, numerical computations confirm that a dense fog composed of micrometric droplets acts like a linear dissipator of the wave envelope. Beams subject to linear damping or to collisions with randomly-distributed opaque droplets are compared.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(1 Pt 2): 016602, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15697742

RESUMO

The long-range propagation of two-colored femtosecond filaments produced by an infrared (IR) ultrashort pulse exciting third harmonics (TH) in the atmosphere is investigated, both theoretically and experimentally. First, it is shown that the coupling between the pump and TH components is responsible for a wide spectral broadening, extending from ultraviolet (UV) wavelengths (220 nm) to the mid-IR (4.5 microm). Supercontinuum generation takes place continuously as the laser beam propagates, while TH emission occurs with a conversion efficiency as high as 0.5%. Second, the TH pulse is proven to stabilize the IR filament like a saturable quintic nonlinearity through four-wave mixing and cross-phase modulation. Third, the filamentation is accompanied by a conical emission of the beam, which becomes enlarged at UV wavelengths. These properties are revealed by numerical simulations and direct experimental observations performed from the Teramobile laser facility.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(4 Pt 2): 046602, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15600542

RESUMO

The filamentation of ultrashort pulses in air is investigated theoretically and experimentally. From the theoretical point of view, beam propagation is shown to be driven by the interplay between random nucleation of small-scale cells and relaxation to long waveguides. After a transient stage along which they vary in location and in amplitude, filaments triggered by an isotropic noise are confined into distinct clusters, called "optical pillars," whose evolution can be approximated by an averaged-in-time two-dimensional (2D) model derived from the standard propagation equations for ultrashort pulses. Results from this model are compared with space- and time-resolved numerical simulations. From the experimental point of view, similar clusters of filaments emerge from the defects of initial beam profiles delivered by the Teramobile laser facility. Qualitative features in the evolution of the filament patterns are reproduced by the 2D reduced model.

7.
Phys Rev Lett ; 92(22): 225002, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15245231

RESUMO

The filamentation of femtosecond light pulses in air is numerically and experimentally investigated for beam powers reaching several TW. Beam propagation is shown to be driven by the interplay between intense, robust spikes created by the defects of the input beam and random nucleation of light cells. Evolution of the filament patterns can be qualitatively reproduced by an averaged-in-time (2D+1)-dimensional model derived from the propagation equations for ultrashort pulses.

8.
Science ; 301(5629): 61-4, 2003 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-12843384

RESUMO

Most long-path remote spectroscopic studies of the atmosphere rely on ambient light or narrow-band lasers. High-power femtosecond laser pulses have been found to propagate in the atmosphere as dynamically self-guided filaments that emit in a continuum from the ultraviolet to the infrared. This white light exhibits a directional behavior with enhanced backward scattering and was detected from an altitude of more than 20 kilometers. This light source opens the way to white-light and nonlinear light detection and ranging applications for atmospheric trace-gas remote sensing or remote identification of aerosols. Air ionization inside the filaments also opens promising perspectives for laser-induced condensation and lightning control. The mobile femtosecond-terawatt laser system, Teramobile, has been constructed to study these applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA