Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 262: 115922, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944388

RESUMO

A family of ten novel ruthenium(II)-cyclopentadienyl organometallics of general formula [Ru(η5-C5H5)(N,N)(PPh2(C6H4COOR)][CF3SO3] (1-10) in which (N,N) = 4,4'-R'-2,2'-bipyridyl (R = -H or -CH2CH2OH; R' = -H, -CH3, -OCH3, -CH2OH, and -CH2-biotin) was prepared from [Ru(η5-C5H5)(PPh2(C6H4COOH))2Cl]. All compounds were fully characterized by means of several spectroscopic and analytical techniques, and the molecular structures of [Ru(η5-C5H5)(PPh2(C6H4COOH))2Cl], 1, 3 and 4 have been additionally studied by single-crystal X-ray diffraction. The anticancer activity of all compounds was evaluated in sensitive and multidrug-resistant counterpart cell lines from human colorectal cancer (Colo 205 and Colo 320) and non-small cell lung cancer NSCLC (A549, NCI-H460 versus NCI-H460/R) as well. Notably, compounds 6 and 7 (R CH2CH2OH and (N,N) = bipy or Me2bipy, respectively) showed antiproliferative effect against both cell lines with high intrinsic selectivity towards cancer cells. The antibacterial activity of all compounds was also evaluated against both Gram negative and Gram positive strains, and some compounds in the series showed potent antibacterial activity against Staphylococcus aureus strains, including the methicillin-resistant MRSA strains. Solution speciation studies revealed that the complexes bearing the PPh2(C6H4COO-) ligand are neutral at physiological pH (7.4) in contrast with their ethylene glycol derivatives that have a permanent positive charge. While all compounds are lipophilic, the difference in the distribution coefficient for neutral and charged complexes is around one order of magnitude. Complexes 6 and 7 exhibited excellent biological activity and were selected for further studies. Spectrofluorometric methods were used to investigate their interaction with biomolecules such as human serum albumin (HSA) and calf thymus DNA (ct-DNA). For these complexes, binding site II of HSA is a possible binding pocket through non-covalent interactions. The release of ethidium from the DNA adduct by the charged complexes proves their interaction with DNA in contrast to the neutral ones. In conclusion, Ru(II)-cyclopentadienyl complexes with 2,2'-bipyridyl-derivatives and an ethylene glycol moiety tethered to the phenylphosphane co-ligand are very promising from a therapeutic perspective, in particular complexes 6 and 7 that display remarkable antibacterial activity with a high anti-proliferative effect against colon and non-small cell lung cancers, both clinically challenging neoplasias in need of effective solutions.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Complexos de Coordenação , Neoplasias Pulmonares , Rutênio , Humanos , 2,2'-Dipiridil , Ligantes , Albumina Sérica Humana , DNA/química , Antibacterianos/farmacologia , Antibacterianos/química , Etilenoglicóis , Antineoplásicos/farmacologia , Antineoplásicos/química , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Linhagem Celular Tumoral
2.
J Inorg Biochem ; 244: 112223, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084580

RESUMO

Hydroxamic acids bearing an (O,O) donor set are well-known metal-chelating compounds with diverse biological activities including anticancer activity. Since steroid conjugation with a pharmacophoric moiety may have the potential to improve this effect, a salicylhydroxamic acid-estradiol hybrid molecule (E2HA) was synthesized. Only minimal effect of the conjugation on the proton dissociation constants was observed in comparison to salicylhydroxamic acid (SHA). The complexation with essential metal ions (iron, copper) was characterized, since E2HA may exert its cytotoxicity through the binding of these ions in cells. UV-visible spectrophotometric and pH-potentiometric titrations revealed the formation of high-stability complexes, while the Fe(III) preference over Fe(II) was proved by cyclic voltammetry and spectroelectrochemical measurements. Complex formation with half-sandwich Rh(III)(η5-Cp*) and Ru(II)(η6-p-cymene) organometallic cations was also studied as it may improve the anticancer effect and the pharmacokinetic profile of the ligand. At equimolar concentration the speciation is complicated because of the presence of mononuclear and binuclear complexes. The complexes readily react with small molecules e.g. glutathione, 1-methylimidazole and nucleosides, having major effect on solution speciation, namely mixed-ligand complex formation and ligand displacement occur. These processes serve as models for the interactions with biomolecules in the body. E2HA exerted moderate anticancer activity (IC50 = 25-59 µM) in the tested three human cancer cell lines (Colo205, Colo320 and MCF-7), while being non-toxic on non-cancerous MRC-5 cells. Meanwhile, SHA was inactive in the same cells. Complexation with half-sandwich Rh(III) and Ru(II) cations had only a minor improvement on the cytotoxic effect of E2HA.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligantes , Estradiol , Compostos Férricos , Antineoplásicos/farmacologia , Antineoplásicos/química , Íons , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Rutênio/química , Linhagem Celular Tumoral
3.
Pharmaceutics ; 15(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839678

RESUMO

Cancer chemotherapeutics usually have serious side effects. Targeting the special properties of cancer and activation of the anticancer drug in the tumor microenvironment in situ may decrease the intensity of the side effects and improve the efficacy of therapy. In this study, half-sandwich Rh complexes are introduced, which may be activated at the acidic, extracellular pH of the tumor tissue. The synthesis and aqueous stability of mixed-ligand complexes with a general formula of [Rh(η5-Cp*)(N,N/O)(N)]2+/+ are reported, where (N,N/O) indicates bidentate 8-quinolate, ethylenediamine and 1,10-phenanthroline and (N) represents the releasable monodentate ligand with a nitrogen donor atom. UV-visible spectrophotometry, 1H NMR, and pH-potentiometry were used to determine the protonation constants of the monodentate ligands, the proton dissociation constants of the coordinated water molecules in the aqua complexes, and the formation constants of the mixed-ligand complexes. The obtained data were compared to those of the analogous Ru(η6-p-cymene) complexes. The developed mixed-ligand complexes were tested in drug-sensitive and resistant colon cancer cell lines (Colo205 and Colo320, respectively) and in four bacterial strains (Gram-positive and Gram-negative, drug-sensitive, and resistant) at different pH values (5-8). The mixed-ligand complexes with 1-methylimidazole displayed sufficient stability at pH 7.4, and their activation was found in cancer cells with decreasing pH; moreover, the mixed-ligand complexes demonstrated antimicrobial activity in Gram-positive and Gram-negative bacteria, including the resistant MRSA strain. This study proved the viability of incorporating releasable monodentate ligands into mixed-ligand half-sandwich complexes, which is supported by the biological assays.

4.
Pharmaceutics ; 14(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36559078

RESUMO

Designing new metallodrugs for anticancer therapy is a driving force in the scientific community. Aiming to contribute to this field, we hereby report the development of a Schiff base (H2L) derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with 2-hydrazinobenzothiazole and its complexation with transition metal ions. All compounds were characterised by analytical and spectroscopic techniques, which disclosed their structure: [Cu(HL)Cl], [Cu(HL)2], [Ni(HL)(acetate)], [Ni(HL)2], [Ru(HL)Cl(DMSO)], [VO(HL)2] and [Fe(HL)2Cl(H2O)]. Different binding modes were proposed, showing the ligand's coordination versatility. The ligand proton dissociation constants were determined, and the tested compounds showed high lipophilicity and light sensitivity. The stability of all complexes in aqueous media and their ability to bind to albumin were screened. Based on an antiproliferative in vitro screening, [Ni(HL)(acetate)] and [Ru(HL)Cl(DMSO)] were selected for further studies aiming to investigate their mechanisms of action and therapeutic potential towards colon cancer. The complexes displayed IC50 < 21 µM towards murine (CT-26) and human (HCT-116) colon cancer cell lines. Importantly, both complexes exhibited superior antiproliferative properties compared to the clinically approved 5-fluorouracil. [Ni(HL)(acetate)] induced cell cycle arrest in S phase in CT-26 cells. For [Ru(HL)Cl(DMSO)] this effect was observed in both colon cancer cell lines. Additionally, both compounds significantly inhibited cell migration particularly in the human colon cancer cell line, HCT-116. Overall, the therapeutic potential of both metal complexes was demonstrated.

5.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681939

RESUMO

Solution chemical properties of two novel 8-hydroxyquinoline-D-proline and homo-proline hybrids were investigated along with their complex formation with [Rh(η5-C5Me5)(H2O)3]2+ and [Ru(η6-p-cymene)(H2O)3]2+ ions by pH-potentiometry, UV-visible spectrophotometry and 1H NMR spectroscopy. Due to the zwitterionic structure of the ligands, they possess excellent water solubility as well as their complexes. The complexes exhibit high solution stability in a wide pH range; no significant dissociation occurs at physiological pH. The hybrids and their Rh(η5-C5Me5) complexes displayed enhanced cytotoxicity in human colon adenocarcinoma cell lines and exhibited multidrug resistance selectivity. In addition, the Rh(η5-C5Me5) complexes showed increased selectivity to the chemosensitive cancer cells over the normal cells; meanwhile, the Ru(η6-p-cymene) complexes were inactive, most likely due to arene loss. Interaction of the complexes with human serum albumin (HSA) and calf-thymus DNA (ct-DNA) was investigated by capillary electrophoresis, fluorometry and circular dichroism. The complexes are able to bind strongly to HSA and ct-DNA, but DNA cleavage was not observed. Changing the five-membered proline ring to the six-membered homoproline resulted in increased lipophilicity and cytotoxicity of the Rh(η5-C5Me5) complexes while changing the configuration (L vs. D) rather has an impact on HSA or ct-DNA binding.


Assuntos
Aminoácidos/química , Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Complexos de Coordenação/farmacologia , Oxiquinolina/química , Ródio/química , Rutênio/química , Antineoplásicos/química , Apoptose , Proliferação de Células , Neoplasias do Colo/patologia , Complexos de Coordenação/química , Humanos , Células Tumorais Cultivadas
6.
Dalton Trans ; 50(34): 11918-11930, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34374386

RESUMO

There is significant interest today in the interaction of half-sandwich anticancer organometallic complexes with proteins. It is considered as a crucial factor in the transport and mode of action of these compounds; thus it can affect their overall pharmacological and toxicological profiles. Albumin binding of high stability Ru(ii)(η6-p-cymene) and Rh(iii)(η5-C5Me5) complexes formed with 8-hydroxyquinoline, its 5-chloro-7-((proline-1-yl)methyl) substituted derivative, 2,2'-bipyridine and 1,10-phenanthroline is discussed herein. The interaction with human serum albumin in terms of kinetic aspects, binding strength and possible binding sites was studied in detail by means of various methods such as 1H NMR spectroscopy, UV-visible spectrophotometry, steady-state and time-resolved fluorometry, ultrafiltration and capillary zone electrophoresis. Ru(ii)(η6-p-cymene)(2,2'-bipyridine) and Ru(ii)(η6-p-cymene)(1,10-phenanthroline) complexes do not bind to the protein measurably, most probably due to kinetic reasons. However, other complexes bind significantly to albumin with fairly different kinetics to albumin. The binding affinity towards hydrophobic binding pockets shows correlation with lipophilicity along with the actual charge of the respective complexes. The studied complexes preserve their original structure upon interaction with albumin. Formation constants computed for the binding of these metal complexes to histidine-containing model oligopeptides demonstrated significant ternary complex formation, pointing out the importance of histidine coordination in the binding of these types of complexes.

7.
Dalton Trans ; 50(23): 8218-8231, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032247

RESUMO

A series of half-sandwich polypyridyl complexes was synthesized and compared focusing on structural, cytotoxic and aqueous solution behaviour. The formula of the synthesized complexes is [M(arene)(N,N)Cl]Cl, where M: Ru or Rh, arene: p-cymene, toluene or C5Me5-, (N,N): 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (dmb), 1,10-phenanthroline (phen) or 2,9-dimethyl-1,10-phenanthroline (neo). The structures of five half-sandwich complexes were determined by X-ray crystallography. It was found that introducing methyl groups next to the coordinating nitrogen atoms of the bidentate ligand causes steric congestion around the metal centre which changes the angle between ligand planes. The ligands and the Rh complexes showed significant cytotoxicity in A2780 and MES-SA cancer cell lines (IC50 = 0.1-56 µM) and in the cisplatin-resistant A2780cis cells. Paradoxically, phen and dmb as well as their half-sandwich Rh complexes showed increased toxicity against multidrug resistant MES-SA/Dx5 cells. In contrast, coordination to Ru caused loss of toxicity. Solution equilibrium constants showed that the studied metal complexes have high stability, and no dissociation was found for Ru and Rh complexes even at micromolar concentrations in a wide pH range. However, in the case of Ru complexes a slow and irreversible decomposition, namely arene loss, was also observed, which was more pronounced in light exposure in aqueous solution. In the case of neo, the methyl groups next to the nitrogen atoms significantly decrease the stability of complexes. For Rh complexes, the order of the stability constants corrected with ligand basicity (log K*): 9.78 (phen) > 9.01 (dmb) > 8.89 (bpy) > 3.93 (neo). The coordinated neo resulted in an enormous decrease in the chloride ion affinity of Ru compounds. Based on the results, a universal model was introduced for the prediction of chloride ion capability of half-sandwich Rh and Ru complexes. It combines the effects of the bidentate ligand and the M(arene) part using only two terms, performing multilinear regression procedure.


Assuntos
Antineoplásicos/farmacologia , Compostos Organometálicos/farmacologia , Ródio/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Tamanho da Partícula , Ródio/química , Rutênio/química , Soluções , Células Tumorais Cultivadas
8.
Dalton Trans ; 49(23): 7977-7992, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32500882

RESUMO

Herein the design and synthesis of a new 8-hydroxyquinoline derivative, (S)-5-chloro-7-((proline-1-yl)methyl)8-hydroxyquinoline (HQCl-Pro), with good water solubility and multidrug resistance reversal activity are reported. In this work the proton dissociation processes of HQCl-Pro and its complex formation with [Rh(η5-C5Me5)(H2O)3]2+, [Ru(η6-p-cymene)(H2O)3]2+ and [Ru(η6-toluene)(H2O)3]2+ were investigated by the combined use of pH-potentiometry, UV-visible spectrometry and 1H NMR spectroscopy. Our results revealed the prominent solution stability of the complexes in all cases. The lipophilicity of the complexes increased with the chloride ion concentration, and the complexes showed moderate log D values (-0.8 to +0.4) at pH 7.4 at all tested Cl- concentrations. The formation of mixed hydroxido complexes from the aqua complexes was characterized by relatively high pKa values (8.45-9.62 in chloride-free medium). Complexation processes are much slower with the Ru(η6-arene) triaqua cations than with [Rh(η5-C5Me5)(H2O)3]2+. Both the pKa values and H2O/Cl- exchange constants of the Ru-complexes are lower by 0.5-1.0 orders of magnitude than those of the Rh analogue. Arene loss (p-cymene and toluene) and oxidation were found in the case of Ru-complexes when an excess of HQCl-Pro and aromatic (N,N) bidentate ligands was added. The cytotoxicity and antiproliferative effect of HQCl-Pro and its complexes were assayed in vitro. In contrast to the structurally familiar 8-hydroxyquinoline, HQCl-Pro and its Rh(η5-C5Me5) complex were somewhat more effective against drug resistant Colo 320 adenocarcinoma human cells compared to the drug sensitive Colo 205 cells. The Ru- and Rh-complexes showed a similar metal uptake level after 4 h, while a longer incubation time resulted in higher cellular Rh concentration.

9.
J Inorg Biochem ; 195: 91-100, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30928657

RESUMO

Half-sandwich organometallic complexes of curcumin are extensively investigated as anticancer compounds. Speciation studies were performed to explore the solution stability of curcumin complexes formed with [Rh(η5-C5Me5)(H2O)3]2+. Acetylacetone (Hacac), as the simplest ß-diketone ligand bearing (O,O) donor set, was involved for comparison and its Ru(η6­p­cymene), Ru(η6­toluene) complexes were also studied. 1H NMR, UV-visible and pH-potentiometric titrations revealed a clear trend of stability constants of the acac complexes: Ru(η6­p­cymene) > Ru(η6­toluene) > Rh(η5-C5Me5). Despite this order, the highest extent of complex formation is seen for the Rh(η5-C5Me5) complexes at pH 7.4. Formation constant of [Rh(η5-C5Me5)(H2curcumin)(H2O)]+ reveals similar solution stability to that of the acac complex. Additionally, structures of two complexes were determined by X-ray crystallography. The in vitro cytotoxicity of curcumin was not improved by the complexation with these organometallic cations.


Assuntos
Complexos de Coordenação/química , Curcumina/análogos & derivados , Pentanonas/química , Ródio/química , Rutênio/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Humanos , Ligantes , Estrutura Molecular , Ligação Proteica , Albumina Sérica Humana/metabolismo
10.
J Inorg Biochem ; 152: 93-103, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26364131

RESUMO

Complex formation equilibrium processes of the (N,N) donor containing 2,2'-bipyridine (bpy) and ethylenediamine (en) with (η(5)-pentamethylcyclopentadienyl)rhodium(III) were investigated in aqueous solution via pH-potentiometry, (1)H NMR spectroscopy, and UV-vis spectrophotometry in the absence and presence of chloride ions. The structure of [RhCp*(en)Cl]ClO4 (Cp*, pentamethylcyclopentadienyl) was also studied by single-crystal X-ray diffraction. pKa values of 8.56 and 9.58 were determined for [RhCp*(bpy)(H2O)](2+) and [RhCp*(en)(H2O)](2+), respectively resulting in the formation of negligible amount of mixed hydroxido complexes at pH 7.4. Stability and the H2O/Cl(-) co-ligand exchange constants of bpy and en complexes considerably exceed those of the bidentate O-donor deferiprone. The strong affinity of the bpy and en complexes to chloride ions most probably contributes to their low antiproliferative effect. Interactions between human serum albumin (HSA) and [RhCp*(H2O)3](2+), its complexes formed with deferiprone, bpy and en were also monitored by (1)H NMR spectroscopy, ultrafiltration/UV-vis and spectrofluorometry. Numerous binding sites (≥ 8) are available for [RhCp*(H2O)3](2+); and the interaction takes place most probably via covalent bonds through the imidazole nitrogen of His. According to the various fluorescence studies [RhCp*(H2O)3](2+) binds on sites I and II, and coordination of surface side chain donor atoms of the protein is also feasible. The binding of the bpy and en complex is weaker and slower compared to that of [RhCp*(H2O)3](2+), and formation of ternary HSA-RhCp*-ligand adducts was proved. In the case of the deferiprone complex, the RhCp* fragment is cleaved off when HSA is loaded with low equivalents of the compound.


Assuntos
2,2'-Dipiridil/química , Albuminas/metabolismo , Complexos de Coordenação/química , Etilenodiaminas/química , Compostos Organometálicos/química , Ródio/química , Albuminas/química , Sequência de Aminoácidos , Sítios de Ligação , Complexos de Coordenação/síntese química , Humanos , Dados de Sequência Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA