Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 173(1): 105-10, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21600209

RESUMO

It was previously shown, that ghrelin and its agonistic analogue, ghrelin 1-18, can be a stimulator of ovarian cell functions (promoter of proliferation, inhibitor of apoptosis and stimulator of hormones release). The aim of our studies was to compare the action of two ghrelin analogues - ghrelin 1-18, activator of ghrelin receptors (GHS-R1a), and (D-Lys3)-GHRP-6, its inhibitor, on porcine ovarian granulosa cell functions. Effects of (D-Lys3)-GHRP-6 added at doses of 0, 1, 10 or 100 ng/ml on the expression of markers of proliferation (PCNA, cyclin B1, MAPK/ERK1,2), apoptosis (bax, p53, caspase 3) and release of steroid hormones (progesterone, testosterone, estradiol) were examined. In addition, some effect of ghrelin 1-8 on some of these parameters (expression of MAPK/ERK1,2, bax, p53) were verified. It was shown, that (D-Lys3)-GHRP-6 promotes all markers of granulosa cell proliferation, inhibits all markers of apoptosis and stimulates the release of all three steroid hormones. Similar effects of (D-Lys3)-GHRP-6 (inhibitor of GHS-R1a) and ghrelin 1-18 (its stimulator) suggest that the examined effects of these substances on porcine ovaries are not mediated by GHS-R1a. Both chemical analogues could be potentially useful for stimulation of reproductive processes, at least in in vitro conditions.


Assuntos
Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Receptores de Grelina/agonistas , Receptores de Grelina/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Grelina/farmacologia , Células da Granulosa/citologia , Oligopeptídeos/farmacologia , Progesterona/metabolismo , Receptores de Grelina/metabolismo , Suínos , Testosterona/metabolismo
2.
Mutat Res ; 665(1-2): 51-60, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19427511

RESUMO

Liver progenitor (oval) cells are a potential target cell population for hepatocarcinogens. Our recent study showed that the liver carcinogens 7H-dibenzo[c,g]carbazole (DBC) and 5,9-dimethyldibenzo[c,g]carbazole (DiMeDBC), but not the sarcomagen N-methyldibenzo[c,g]carbazole (N-MeDBC), induced several cellular events associated with tumor promotion in WB-F344 cells, an in vitro model of liver oval cells [J. Vondracek, L. Svihalkova-Sindlerova, K. Pencikova, P. Krcmar, Z. Andrysik, K. Chramostova, S. Marvanova, Z. Valovicova, A. Kozubik, A. Gabelova, M. Machala, 7H-Dibenzo[c,g]carbazole and 5,9-dimethyldibenzo[c,g]carbazole exert multiple toxic events contributing to tumor promotion in rat liver epithelial 'stem-like' cells, Mutat. Res. Fundam. Mol. Mech. Mutagen. 596 (2006) 43-56]. In this study, we focused on the genotoxic effects generated by these dibenzocarbazoles in WB-F344 cells to better understand the cellular and molecular mechanisms involved in hepatocarcinogenesis. Lower IC(50) values determined for DBC and DiMeDBC, as compared with N-MeDBC, indicated a higher sensitivity of WB-F344 cells towards hepatocarcinogens. Accordingly, DBC produced a dose-dependent DNA-adduct formation resulting in substantial inhibition of DNA replication and transcription. In contrast, DNA-adduct number detected in DiMeDBC-exposed cells was almost negligible, whereas N-MeDBC produced a low level of DNA adducts. Although all dibenzocarbazoles significantly increased the level of strand breaks (p<0.05) and micronuclei (p<0.001) after 2-h treatment, differences in the kinetics of strand break rejoining were found. The strand break level in DiMeDBC- and N-MeDBC-exposed cells returned to near the background level within 24h after treatment, whereas a relatively high DNA damage level was detected in DBC-treated cells up to 48h after exposure. Additional breaks detected after incubation of DiMeDBC-exposed WB-F344 cells with a repair-specific endonuclease, along with a nearly 3-fold higher level of reactive oxygen species found in these cells as compared with control, suggest a possible role of oxidative stress in DiMeDBC genotoxicity. We demonstrated qualitative differences in the DNA damage profiles produced by hepatocarcinogens DBC and DiMeDBC in WB-F344 cells. Different lesions may trigger distinct cellular pathways involved in hepatocarcinogenesis. The low amount of DNA damage, together with an efficient repair, may explain the lack of hepatocarcinogenicity of N-MeDBC.


Assuntos
Carbazóis/toxicidade , Carcinógenos/toxicidade , Dano ao DNA , Reparo do DNA , Fígado/efeitos dos fármacos , Fígado/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Animais , Linhagem Celular , Adutos de DNA/metabolismo , Histonas/metabolismo , Cinética , Fígado/citologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Modelos Biológicos , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ratos , Sarcoma Experimental/induzido quimicamente , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA