Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 64(5): 13, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195656

RESUMO

Purpose: Fuchs endothelial corneal dystrophy (FECD) is characterized by an accelerated depletion of corneal endothelial cells. There is growing evidence that mitochondrial exhaustion is central in the pathology. Indeed, endothelial cells loss in FECD forces the remaining cells to increase their mitochondrial activity, leading to mitochondrial exhaustion. This generates oxidation, mitochondrial damage, and apoptosis, fueling a vicious cycle of cells' depletion. This depletion ultimately causes corneal edema and irreversible loss of transparency and vision. Concurrently to endothelial cells loss, the formation of extracellular mass called guttae on the Descemet's membrane, is a hallmark of FECD. The pathology origins at the center of the cornea and progress outward, like the appearance of guttae. Methods: Using corneal endothelial explants from patients with late-stage FECD at the time of their corneal transplantation, we correlated mitochondrial markers (mitochondrial mass, potential, and calcium) and the level of oxidative stress and apoptotic cells, with the area taken by guttae. The different markers have been analyzed using fluorescent-specific probes and microscopic analysis. Results: We observed a positive correlation between the presence of guttae and the level of mitochondrial calcium and apoptotic cells. We found a negative correlation between the presence of guttae and the level of mitochondrial mass, membrane potential, and oxidative stress. Conclusions: Taken together, these results show that the presence of guttae is correlated with negative outcome in the mitochondrial health, oxidative status, and survival of nearby endothelial cells. This study provides insight on FECD etiology that could lead to treatment targeting mitochondrial stress and guttae.


Assuntos
Distrofia Endotelial de Fuchs , Humanos , Distrofia Endotelial de Fuchs/patologia , Células Endoteliais/patologia , Cálcio , Endotélio Corneano/patologia , Progressão da Doença
2.
Sci Rep ; 13(1): 3380, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854766

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is characterized by an accelerated loss of corneal endothelial cells. Since the function of these cells is to maintain the cornea in a state of deturgescence necessary for its transparency, the depletion of corneal endothelial cells ultimately causes corneal edema and irreversible loss of vision. Evidence is accumulating regarding the central involvement of mitochondria in FECD. As we have previously shown, when endothelial cells die and are not replaced, the mitochondria of surviving cells must provide more energy to compensate, leading to a phenomenon we have called mitochondrial burnout. This burnout causes cell death, thus exacerbating an irreversible vicious circle responsible for FECD progression. Corneal transplantation, for which the transplant supply is insufficient, is the only curative alternative for FECD. It thus becomes imperative to find other avenues of treatment. In this article, we tested whether incorporating healthy mitochondria into FECD cells would improve pathological molecular markers of the disease. Using corneal endothelium explants from FECD patients, we demonstrated that incorporation of exogenous mitochondria into FECD cells by co-incubation reduces oxidative stress, increases mitochondrial membrane potential, and reduces mitophagy. In addition, internalization of exogenous mitochondria significantly reduces apoptosis (57% in FECD vs 12% in FECD with internalized mitochondria). Taken together, these results suggest that the internalization of exogenous mitochondria reverses the vicious circle involved in FECD, thus revealing a much-needed novel treatment alternative for FECD.


Assuntos
Distrofia Endotelial de Fuchs , Humanos , Células Endoteliais , Mitocôndrias , Morte Celular , Apoptose
3.
Biomed Opt Express ; 11(11): 6590-6604, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282510

RESUMO

Photoacoustic sensing can be a powerful technique to obtain real-time feedback of laser energy dose in treatments of biological tissue. However, when laser therapy uses pulses with microsecond duration, they are not optimal for photoacoustic pressure wave generation. This study examines a programmable fiber laser technique using pulse modulation in order to optimize the photoacoustic feedback signal to noise ratio (SNR) in a context where longer laser pulses are employed, such as in selective retinal therapy. We have demonstrated with a homogeneous tissue phantom that this method can yield a greater than seven-fold improvement in SNR over non-modulated square pulses of the same duration and pulse energy. This technique was further investigated for assessment of treatment outcomes in leporine retinal explants by photoacoustic mapping around the cavitation-induced frequency band.

4.
Sci Rep ; 10(1): 5811, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242036

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is a degenerative eye disease characterized by corneal endothelial cell (CEC) death and the formation of guttae, an abnormal thickening of CEC's basement membrane. At the tissue level, an oxidative stress causing mitochondrial damage and CEC death have been described to explain FECD pathogenesis. At the cellular level, our group has previously observed significant variability in the mitochondrial mass of FECD CECs. This led us to hypothesize that mitochondrial mass variability might play a key role in the chronology of events eventually leading to CEC death in FECD. We thus used different fluorescent markers to assess mitochondrial health and functionality as a function of mitochondrial mass in FECD corneal endothelial explants, namely, intra-mitochondrial calcium, mitochondrial membrane potential, oxidation level and apoptosis. This has led us to describe for the first time a sequence of events leading to what we referred to as a mitochondrial burnout, and which goes as follow. FECD CECs initially compensate for endothelial cell losses by incorporating mitochondrial calcium to help generating more ATP, but this leads to increased oxidation. CECs then resist the sustained need for more ATP by increasing their mitochondrial mass, mitochondrial calcium and mitochondrial membrane potential. At this stage, CECs reach their maximum capacity and start to cope with irreversible oxidative damage, which leads to mitochondrial burnout. This burnout is accompanied by a dissipation of the membrane potential and a release of mitochondrial calcium, which in turn leads to cell death by apoptosis.


Assuntos
Esgotamento Psicológico/patologia , Morte Celular/fisiologia , Células Endoteliais/patologia , Endotélio Corneano/patologia , Distrofia Endotelial de Fuchs/patologia , Mitocôndrias/patologia , Idoso , Idoso de 80 Anos ou mais , Apoptose/fisiologia , Dano ao DNA/fisiologia , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia
5.
Biomed Opt Express ; 11(1): 109-132, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010504

RESUMO

Pilot results showing the potential of sub-microsecond laser pulse shaping to optimize thermomechanical confinement in laser-tissue interactions involving microcavitation are presented. Model samples based on aqueous suspensions of retinal melanosomes and eumelanin particles were irradiated at 532 nm with nanosecond laser pulses and picosecond laser pulse trains having differing shapes and durations. The cavitation threshold radiant exposure and the bubble lifetime above the threshold were measured using a pump-probe setup and sub-nanosecond time-resolved imaging. Both quantities were found to strongly depend on the pulse format. These results suggest that sub-microsecond laser pulse shaping could be exploited to optimize precision and control in numerous applications of laser-directed microcavitation, including selective retinal laser treatments.

6.
Invest Ophthalmol Vis Sci ; 57(13): 5547-5555, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27768793

RESUMO

PURPOSE: Human chromosomes are protected at their end by a long portion of hexameric tandem repeats, the telomere. In somatic cells, telomere attrition caused by endogenous and exogenous oxidative stress as well as DNA replication can threaten genomic integrity and lead to the deterioration of tissue functions and an age-related physiological decline. The human eye is a complex organ in which cells of different ocular tissues are exposed to photo-oxidation, high mitochondrial metabolic activity, and/or replicative pressure. METHODS: We employed a highly sensitive quantitative PCR technique to determine relative telomere length in different human ocular structures. RESULTS: The longest telomeres in all ocular structures analyzed are found in neural retina, and the shortest are in the cornea. Within the retina, retinal pigment epithelium has four times shorter telomeres when compared to neural retina. However, no age-dependent telomere attrition in the retina and no difference between telomere lengths in the macular region and the rest of the retina have been found. In the cornea, stroma has the longer telomeres. In the corneal endothelium, we found a clear age-dependent telomere shortening. Since the endothelium is one of the most metabolically active ocular structure, this result suggests that endogenous oxidative stress from high mitochondrial activity is a major determinant of telomere loss in this structure. CONCLUSIONS: Taken together, our results imply that the aging process and telomere attrition in the different ocular structures are the result of multiple factors and could not be attributed to solely exogenous or endogenous oxidation or DNA replication.


Assuntos
Envelhecimento/genética , Doenças da Córnea/genética , DNA/genética , Endotélio Corneano/metabolismo , Estresse Oxidativo , Telômero/genética , Idoso , Idoso de 80 Anos ou mais , Cadáver , Criança , Doenças da Córnea/diagnóstico , Doenças da Córnea/metabolismo , Endotélio Corneano/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA