Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(19)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37184014

RESUMO

We investigate the effect of pressure on the carbon dioxide (CO2) hydrate-water interfacial free energy along its dissociation line using advanced computer simulation techniques. In previous works, we have determined the interfacial energy of the hydrate at 400 bars using the TIP4P/Ice and TraPPE molecular models for water and CO2, respectively, in combination with two different extensions of the Mold Integration technique [J. Colloid Interface Sci. 623, 354 (2022) and J. Chem. Phys. 157, 134709 (2022)]. Results obtained from computer simulation, 29(2) and 30(2) mJ/m2, are found to be in excellent agreement with the only two measurements that exist in the literature, 28(6) mJ/m2 determined by Uchida et al. [J. Phys. Chem. B 106, 8202 (2002)] and 30(3) mJ/m2 determined by Anderson et al. [J. Phys. Chem. B 107, 3507 (2002)]. Since the experiments do not allow to obtain the variation of the interfacial energy along the dissociation line of the hydrate, we extend our previous studies to quantify the effect of pressure on the interfacial energy at different pressures. Our results suggest that there exists a correlation between the interfacial free energy values and the pressure, i.e., it decreases with the pressure between 100 and 1000 bars. We expect that the combination of reliable molecular models and advanced simulation techniques could help to improve our knowledge of the thermodynamic parameters that control the interfacial free energy of hydrates from a molecular perspective.

2.
J Chem Phys ; 158(18)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37158326

RESUMO

In this paper, the solubility of carbon dioxide (CO2) in water along the isobar of 400 bar is determined by computer simulations using the well-known TIP4P/Ice force field for water and the TraPPE model for CO2. In particular, the solubility of CO2 in water when in contact with the CO2 liquid phase and the solubility of CO2 in water when in contact with the hydrate have been determined. The solubility of CO2 in a liquid-liquid system decreases as the temperature increases. The solubility of CO2 in a hydrate-liquid system increases with temperature. The two curves intersect at a certain temperature that determines the dissociation temperature of the hydrate at 400 bar (T3). We compare the predictions with T3 obtained using the direct coexistence technique in a previous work. The results of both methods agree, and we suggest 290(2) K as the value of T3 for this system using the same cutoff distance for dispersive interactions. We also propose a novel and alternative route to evaluate the change in chemical potential for the formation of hydrates along the isobar. The new approach is based on the use of the solubility curve of CO2 when the aqueous solution is in contact with the hydrate phase. It considers rigorously the non-ideality of the aqueous solution of CO2, providing reliable values for the driving force for nucleation of hydrates in good agreement with other thermodynamic routes used. It is shown that the driving force for hydrate nucleation at 400 bar is larger for the methane hydrate than for the carbon dioxide hydrate when compared at the same supercooling. We have also analyzed and discussed the effect of the cutoff distance of dispersive interactions and the occupancy of CO2 on the driving force for nucleation of the hydrate.

3.
J Phys Chem B ; 126(42): 8553-8570, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36222501

RESUMO

In this paper, the solubility of methane in water along the 400 bar isobar is determined by computer simulations using the TIP4P/Ice force field for water and a simple LJ model for methane. In particular, the solubility of methane in water when in contact with the gas phase and the solubility of methane in water when in contact with the hydrate has been determined. The solubility of methane in a gas-liquid system decreases as temperature increases. The solubility of methane in a hydrate-liquid system increases with temperature. The two curves intersect at a certain temperature that determines the triple point T3 at a certain pressure. We also determined T3 by the three-phase direct coexistence method. The results of both methods agree, and we suggest 295(2) K as the value of T3 for this system. We also analyzed the impact of curvature on the solubility of methane in water. We found that the presence of curvature increases the solubility in both the gas-liquid and hydrate-liquid systems. The change in chemical potential for the formation of hydrate is evaluated along the isobar using two different thermodynamic routes, obtaining good agreement between them. It is shown that the driving force for hydrate nucleation under experimental conditions is higher than that for the formation of pure ice when compared at the same supercooling. We also show that supersaturation (i.e., concentrations above those of the planar interface) increases the driving force for nucleation dramatically. The effect of bubbles can be equivalent to that of an additional supercooling of about 20 K. Having highly supersaturated homogeneous solutions makes possible the spontaneous formation of the hydrate at temperatures as high as 285 K (i.e., 10K below T3). The crucial role of the concentration of methane for hydrate formation is clearly revealed. Nucleation of the hydrate can be either impossible or easy and fast depending on the concentration of methane which seems to play the leading role in the understanding of the kinetics of hydrate formation.

4.
J Chem Phys ; 157(13): 134709, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209019

RESUMO

The growth pattern and nucleation rate of carbon dioxide hydrate critically depend on the precise value of the hydrate-water interfacial free energy. There exist in the literature only two independent experimental measurements of this thermodynamic magnitude: one obtained by Uchida et al. [J. Phys. Chem. B 106, 8202 (2002)], 28(6) mJ/m2, and the other by Anderson and co-workers [J. Phys. Chem. B 107, 3507 (2003)], 30(3) mJ/m2. Recently, Algaba et al. [J. Colloid Interface Sci. 623, 354 (2022)] have extended the mold integration method proposed by Espinosa and co-workers [J. Chem. Phys. 141, 134709 (2014)] to deal with the CO2 hydrate-water interfacial free energy (mold integration-guest or MI-H). Computer simulations predict a value of 29(2) mJ/m2, in excellent agreement with experimental data. The method is based on the use of a mold of attractive wells located at the crystallographic positions of the oxygen atoms of water molecules in equilibrium hydrate structures to induce the formation of a thin hydrate slab in the liquid phase at coexistence conditions. We propose here a new implementation of the mold integration technique using a mold of attractive wells located now at the crystallographic positions of the carbon atoms of the CO2 molecules in the equilibrium hydrate structure. We find that the new mold integration-guest methodology, which does not introduce positional or orientational information of the water molecules in the hydrate phase, is able to induce the formation of CO2 hydrates in an efficient way. More importantly, this new version of the method predicts a CO2 hydrate-water interfacial energy value of 30(2) mJ/m2, in excellent agreement with experimental data, which is also fully consistent with the results obtained using the previous methodology.

5.
J Colloid Interface Sci ; 623: 354-367, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35594594

RESUMO

HYPOTHESIS: Carbon dioxide hydrates are ice-like nonstoichiometric inclusion solid compounds with importance to global climate change, and gas transportation and storage. The thermodynamic and kinetic mechanisms that control carbon dioxide nucleation critically depend on hydrate-water interfacial free energy. Only two independent indirect experiments are available in the literature. Interfacial energies show large uncertainties due to the conditions at which experiments are performed. Under these circumstances, we hypothesize that accurate molecular models for water and carbon dioxide combined with computer simulation tools can offer an alternative but complementary way to estimate interfacial energies at coexistence conditions from a molecular perspective. CALCULATIONS: We have evaluated the interfacial free energy of carbon dioxide hydrates at coexistence conditions (three-phase equilibrium or dissociation line) implementing advanced computational methodologies, including the novel Mold Integration methodology. Our calculations are based on the definition of the interfacial free energy, standard statistical thermodynamic techniques, and the use of the most reliable and used molecular models for water (TIP4P/Ice) and carbon dioxide (TraPPE) available in the literature. FINDINGS: We find that simulations provide an interfacial energy value, at coexistence conditions, consistent with the experiments from its thermodynamic definition. Our calculations are reliable since are based on the use of two molecular models that accurately predict: (1) The ice-water interfacial free energy; and (2) the dissociation line of carbon dioxide hydrates. Computer simulation predictions provide alternative but reliable estimates of the carbon dioxide interfacial energy. Our pioneering work demonstrates that is possible to predict interfacial energies of hydrates from a truly computational molecular perspective and opens a new door to the determination of free energies of hydrates.

6.
Phys Chem Chem Phys ; 24(9): 5371-5382, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35170596

RESUMO

In this work, the liquid-liquid phase equilibria and interfacial properties of methyl ester + water binary mixtures are determined at atmospheric pressure and from 278 to 358 K combining the direct coexistence technique and molecular dynamics simulations. Methyl esters are modelled using new parametrizations based on the united atom TraPPE model force field proposed recently by us [E. Feria, J. Algaba, J. M. Míguez, A. Mejía, P. Gómez-Álvarez and F. J. Blas, Phys. Chem. Chem. Phys., 2019, 22, 4974-4983] that are able to predict the vapour-liquid interfacial properties of pure methyl esters with high accuracy. In the case of water, we consider the well-known TIP4P/2005 model, the most popular rigid and non-polarizable model to describe the interfacial properties of pure water. The simulations are performed using the direct coexistence technique in the isothermal-isobaric or NPzT ensemble in combination with molecular dynamics. We obtain density profiles, temperature-densities and temperature-composition projections of the phase diagrams, and interfacial tensions. The liquid-liquid interfacial tension is calculated from the normal and tangential components of the pressure tensor according to the mechanical virial route. We pay attention particularly to the ability of the molecular models in predicting the experimental behavior of the systems. Simulation results are able to account for the liquid-liquid phase equilibria of these binary mixtures, in good agreement with the experimental data taken from the literature. Unfortunately, experimental values for interfacial tensions are substantially overestimated by predictions from computer simulations in all cases. To our knowledge, this is the first time that the liquid-liquid phase equilibrium and interfacial properties of methyl ester + water mixtures have been predicted from computer simulations.

7.
Phys Chem Chem Phys ; 22(46): 27121-27133, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33225339

RESUMO

In this work, the liquid-liquid interfacial properties of methanol plus n-alkane (n-hexane, n-heptane, n-octane) mixtures are investigated at atmospheric pressure by two complementary molecular modelling techniques; namely, molecular dynamic simulations (MD) and density gradient theory (DGT) coupled with the PC-SAFT (perturbed-chain statistical associating fluid theory) equation of state. Furthermore, two molecular models of methanol are used, which are based on a non-polarisable three site approach. On the one hand, is the original (flexible) TraPPE-UA model force field. On the other hand, is the rigid approximation denoted as OPLS/2016. In both cases, n-alkanes are modelled using the TraPPE-UA model. Simulations are performed using the direct coexistence technique in the ensemble. Special attention is paid to the comparison between the estimations obtained from different methanol models, the available experimental data and theoretical calculations. In all cases, the rigid model is capable of predicting the experimental phase equilibrium and interfacial properties accurately. Unsurprisingly, the methanol-rich density and interfacial tension are overestimated using the TraPPE model combined with Lorentz-Berthelot mixing rules for predicting the mixture behaviour. Accurate comparison between MD and DGT plus PC-SAFT requires consideration of the cross-interactions between individual influence parameters and fitting the ßij values. This latter aspect is particularly important because it allows the exploitation of the link between the EOS model and the direct molecular simulation of the corresponding fluid. At the same time, it was demonstrated that the key property defining the interfacial tension value is the absolute concentration of methanol in the methanol-rich phase. This behaviour indicates that there are more hydrogens bonded with each other, and they interact favourably with an increasing number of carbon atoms in the alkane.

8.
Phys Chem Chem Phys ; 22(9): 4974-4983, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083261

RESUMO

We have determined the phase equilibria and interfacial properties of a methyl ester homologous series (from methyl acetate to methyl heptanoate) using direct simulations of the vapour-liquid interfaces. The methyl esters are modelled using the united atom approach in combination with transferable parameters for phase equilibria (TraPPE) force fields for alkanes, alkenes, carbon dioxide, ethers, and carboxylic acids in a transferable way. This allows us to take into account explicitly both dispersive and coulombic interactions, as well as the repulsive Pauli-exclusion interactions. Simulations are performed in the NVT or canonical ensemble using molecular dynamics. Vapour-liquid surface tension is determined using the virial route, i.e., evaluating the normal and tangential components of the pressure tensor along the simulation box. We have also calculated density profiles, coexistence densities, vapour pressures, surface entropies and enthalpies, and interfacial thickness as functions of temperature, as well as the normal boiling temperatures and the critical temperatures, densities, and pressures for each member of the series. Special attention is paid to the comparison between experimental data taken from the literature and our results obtained using molecular dynamics simulations. We also analyze the effect of increasing the molecular weight of the methyl esters (at fixed temperature) on all the properties considered, with special emphasis on phase equilibria envelopes and surface tension. The TraPPE force fields transferred from other molecules and chemical families are able to predict very accurately the experimental vapour-liquid phase envelopes of methyl esters. We also compare the results obtained from simulations of the surface tension, with experimental data taken from the literature. To our knowledge, this is the first time that vapour-liquid phase equilibria and interfacial properties, and particularly surface tension, of this methyl ester homologous series are obtained using computer simulation.

9.
Phys Chem Chem Phys ; 21(22): 11937-11948, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31134241

RESUMO

A new Helmholtz free energy density functional is presented to predict the vapor-liquid interface of chainlike molecules. The functional is based on the last version of the statistical associating fluid theory for potentials of variable range for homogeneous Mie chainlike fluids (SAFT-VR Mie). Following the standard formalism, the density functional theory (SAFT-VR Mie DFT) is constructed using a perturbative approach in which the free energy density contains a reference term to describe all the short-range interactions treated at the local level, and a perturbative contribution to account for the attractive perturbation which incorporates the long-range dispersive interactions. In this first work, we use a mean-field version of the theory in which the pair correlations are neglected in the attractive term. The SAFT-VR Mie DFT formalism is used to examine the effect of molecular chain length and the repulsive exponent of the intermolecular potential on density profiles and surface tension of linear chains made up of up to six Mie (λr - 6) segments with different values of the repulsive exponent of the intermolecular potential. Theoretical predictions from the theory are compared directly with molecular simulation data for density profiles and surface tension of Mie chainlike molecules taken from the literature. Agreement between theory and simulation data is good for short-chain molecules under all thermodynamic conditions of coexistence considered. Once the theory has proven that it is able to predict the interfacial properties, and particularly interfacial tension, the SAFT-VR Mie DFT formalism is used to predict the interfacial behavior of two new coarse-grained models for carbon dioxide and water recently proposed in the literature. In particular, the theoretical formalism, in combination with the coarse-grained models for carbon dioxide and water, is able to predict the interfacial properties of these important substances in a reasonable way.

10.
Phys Chem Chem Phys ; 19(19): 12296-12309, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513739

RESUMO

The statistical associating fluid theory for attractive potentials of variable range (SAFT-VR) density functional theory (DFT) developed by [Gloor et al., J. Chem. Phys., 2004, 121, 12740-12759] is used to predict the interfacial behaviour of molecules modelled as fully-flexible square-well chains formed from tangentially-bonded monomers of diameter σ and potential range λ = 1.5σ. Four different model systems, comprising 4, 8, 12, and 16 monomers per molecule, are considered. In addition to that, we also compute a number of interfacial properties of molecular chains from direct simulation of the vapour-liquid interface. The simulations are performed in the canonical ensemble, and the vapour-liquid interfacial tension is evaluated using the wandering interface (WIM) method, a technique based on the thermodynamic definition of surface tension. Apart from surface tension, we also obtain density profiles, coexistence densities, vapour pressures, and critical temperature and density, paying particular attention to the effect of the chain length on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapour-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. The interfacial thickness and surface tension appear to exhibit an asymptotic limiting behaviour for long chains. A similar behaviour is also observed for the coexistence densities and critical properties. Agreement between theory and simulation results indicates that SAFT-VR DFT is only able to predict qualitatively the interfacial properties of the model. Our results are also compared with simulation data taken from the literature, including the vapour-liquid coexistence densities, vapour pressures, and surface tension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA