Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38136756

RESUMO

Biofilm accumulation, the appearance of white spot lesions and the development of secondary caries are the main complications in orthodontic patients. A promising approach to fight this situation is the development of adhesive cements with improved antibacterial properties. The aim of the present study was to evaluate the possibility of improving the antibacterial properties of glass ionomer cements by incorporating different types of antimicrobial compounds without altering their physical and mechanical properties. Different concentrations of silver carbonate (SC) and an inorganic glass with encapsulated silver were added to the glass ionomer cement, as well as chitosan, to achieve synergistic antibacterial activity. Variations in the antibacterial capacity were evaluated using the agar diffusion test; the potential alteration of the physical and mechanical properties of the material was analyzed by the shear bond strength test. SEM characterization and colorimetric evaluation were also conducted. Samples of SC up to 1% and inorganic glass with encapsulated silver up to 5% showed significant improvement in their antibacterial ability without compromising shear strength. The highest antimicrobial activity was observed for Lactobacillus acidophilus, with inhibition zones of 3.8 and 3.1 mm for SC and inorganic glass, respectively. The characterization of the samples did not detect any major structural changes between the different samples. The only group that underwent a noticeable color change was the group with SC. The results show that the incorporation of silver carbonate and inorganic glass with encapsulated silver provided the glass ionomer cement with an antibacterial capacity without compromising the bond strength and without modifying the structure of the material.

2.
Phys Chem Chem Phys ; 25(29): 19380-19408, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37435616

RESUMO

Nanoparticles have become increasingly important for a variety of applications, including medical diagnosis and treatment, energy harvesting and storage, catalysis, and additive manufacturing. The development of nanoparticles with different compositions, sizes, and surface properties is essential to optimize their performance for specific applications. Pulsed laser ablation in liquid is a green chemistry approach that allows for the production of ligand-free nanoparticles with diverse shapes and phases. Despite these numerous advantages, the current production rate of this method remains limited, with typical rates in the milligram per hour range. To unlock the full potential of this technique for various applications, researchers have dedicated efforts to scaling up production rates to the gram-per-hour range. Achieving this goal necessitates a thorough understanding of the factors that limit pulsed laser ablation in liquid (PLAL) productivity, including laser, target, liquid, chamber, and scanner parameters. This perspective article explores these factors and provides a roadmap for increasing PLAL productivity that can be adapted to specific applications. By carefully controlling these parameters and developing new strategies for scaling up production, researchers can unlock the full potential of pulsed laser ablation in liquids.

3.
Opt Express ; 30(23): 41541-41553, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366629

RESUMO

Noble metal nanostructures are well-known for their ability to increase the efficiency of different optical or physical phenomena due to their plasmonic behavior. This work presents a simple strategy to obtain Au plasmonic patterns by optically induced nanoparticle assembly and its application as fluorescence enhancement platforms. This strategy is based on the so-called photovoltaic optoelectronic tweezers (PVOT) being the first time they are used for fabricating Au periodic micro-patterns. Fringe patterns with a sub-structure of aggregates, assembled from individual spherical nanoparticles of 3.5 or 170 nm diameters, are successfully obtained. The spatial distribution of the aggregates is controlled with micrometric accuracy and the patterns can be arranged over large-scale active areas (tens of mm2). The outcome for the ultra-small (3.5 nm) particles is particularly relevant because this diameter is the smallest one manipulated by PVOT so far. Testing experiments of plasmonic fluorescence enhancement show that the 170-nm patterns present a much better plasmonic behavior. For the 170-nm platform they reveal a 10-fold enhancement factor in the fluorescence of Rhodamine-B dye molecules and a 3-fold one for tagged DNA biomolecules. Hence, the results suggest that these latter plasmonic platforms are good candidates for efficient bio-imaging and biosensing techniques, among other applications.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Nanoestruturas/química , DNA/química
4.
Sci Rep ; 12(1): 8118, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581241

RESUMO

In the current COVID-19 pandemic, the next generation of innovative materials with enhanced anti-SARS-CoV-2 activity is urgently needed to prevent the spread of this virus within the community. Herein, we report the synthesis of chitosan/α-Ag2WO4 composites synthetized by femtosecond laser irradiation. The antimicrobial activity against Escherichia coli, Methicilin-susceptible Staphylococcus aureus (MSSA), and Candida albicans was determined by estimating the minimum inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC). To assess the biocompatibility of chitosan/α-Ag2WO4 composites in a range involving MIC and MBC/MFC on keratinocytes cells (NOK-si), an alamarBlue™ assay and an MTT assay were carried out. The SARS-CoV-2 virucidal effects was analyzed in Vero E6 cells through viral titer quantified in cell culture supernatant by PFU/mL assay. Our results showed a very similar antimicrobial activity of chitosan/α-Ag2WO4 3.3 and 6.6, with the last one demonstrating a slightly better action against MSSA. The chitosan/α-Ag2WO4 9.9 showed a wide range of antimicrobial activity (0.49-31.25 µg/mL). The cytotoxicity outcomes by alamarBlue™ revealed that the concentrations of interest (MIC and MBC/MFC) were considered non-cytotoxic to all composites after 72 h of exposure. The Chitosan/α-Ag2WO4 (CS6.6/α-Ag2WO4) composite reduced the SARS-CoV-2 viral titer quantification up to 80% of the controls. Then, our results suggest that these composites are highly efficient materials to kill bacteria (Escherichia coli, Methicillin-susceptible Staphylococcus aureus, and the yeast strain Candida albicans), in addition to inactivating SARS-CoV-2 by contact, through ROS production.


Assuntos
COVID-19 , Quitosana , Infecções por Escherichia coli , Infecções Estafilocócicas , Antibacterianos/farmacologia , Candida albicans , Quitosana/farmacologia , Escherichia coli , Humanos , Lasers , Testes de Sensibilidade Microbiana , Pandemias , SARS-CoV-2 , Staphylococcus aureus
5.
Sci Rep ; 10(1): 4613, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165706

RESUMO

Controlling the structural organization and crystallinity of functional oxides is key to enhancing their performance in technological applications. In this work, we report a strong enhancement of the structural organization and crystallinity of Bi2WO6 samples synthetized by a microwave-assisted hydrothermal method after exposing them to femtosecond laser irradiation. X-ray diffraction, UV-vis and Raman spectroscopies, photoluminescence emissions, energy dispersive spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy were employed to characterize the as-synthetized samples. To complement and rationalize the experimental results, first-principles calculations were employed to study the effects of femtosecond laser irradiation. Structural and electronic effects induced by femtosecond laser irradiation enhance the long-range crystallinity while decreasing the free carrier density, as it takes place in the amorphous and liquid states. These effects can be considered a clear cut case of surface-enhanced Raman scattering.

6.
Opt Express ; 27(14): 19788-19801, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503734

RESUMO

In nonlinear microscopy, phase-only spatial light modulators (SLMs) allow achieving simultaneous two-photon excitation and fluorescence emission from specific region-of-interests (ROIs). However, as iterative Fourier transform algorithms (IFTAs) can only approximate the illumination of selected ROIs, both image formation and/or signal acquisition can be largely affected by the spatial irregularities of the illumination patterns and the speckle noise. To overcome these limitations, we propose an alternative complex illumination method (CIM) able to generate simultaneous excitation of large-area ROIs with full control over the amplitude and phase of light and reduced speckle. As a proof-of-concept we experimentally demonstrate single-photon and second harmonic generation (SHG) with structured illumination over large-area ROIs.

7.
ACS Appl Bio Mater ; 2(2): 824-837, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35016286

RESUMO

In nanotechnology research, significant effort is devoted to fabricating patterns of metallic nanoparticles on the surfaces of different semiconductors to find innovative materials with favorable characteristics, such as antimicrobial and photocatalytic properties, for novel applications. We present experimental and computational progress, involving a combined approach, on the antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) of as-synthesized α-Ag2WO4 samples and Ag nanoparticle composites (Ag NPs)/α-Ag2WO4. The former included two morphologies: hexagonal rod-like (α-Ag2WO4-R) and cuboid-like (α-Ag2WO4-C), and the latter included composites formed under electron beam, Ag NPs/α-Ag2WO4-RE and Ag NPs/α-Ag2WO4-CE, and femtosecond (fs) laser irradiation, Ag NPs/α-Ag2WO4-RL and Ag NPs/α-Ag2WO4-CL. Direct observations of the arrangement of Ag NPs on the Ag NPs/α-Ag2WO4 composites irradiated with an electron beam and laser, through transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive X-ray spectroscopy, and field-emission scanning electron microscopy, allow us to investigate the surface morphology, chemical composition, homogeneity, and crystallinity. Therefore, these experimental factors, and in particular, the facet-dependent response of Ag NPs/α-Ag2WO4 composites were discussed and analyzed from the perspective provided by the results obtained by first-principles calculations. On this basis, α-Ag2WO4-R material proved to be a better bactericidal agent than α-Ag2WO4-C with minimum bactericidal concentration (MBC) values of 128 and 256 µg/mL, respectively. However, the Ag NPs/α-Ag2WO4-CL composite is the most efficient bactericidal agent of all tested samples (MBC = 4 µg/mL). This superior performance can be attributed to the cooperative effects of crystal facets and defect engineering. These results on the synthesis and stability of the Ag NPs/α-Ag2WO4 composites can be used for the development of highly efficient bactericidal agents for use in environmental remediation and the potential extension of methods to produce materials with catalytic applications.

8.
ACS Omega ; 3(3): 2735-2742, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023850

RESUMO

Fluorescent carbon quantum dots (CQDs) are synthesized by laser irradiation of carbon glassy particles suspended in polyethylene glycol 200 by two methods, a batch and a flow jet configuration. The flow jet configuration is carried out by the simple combination of common laboratory objects to construct a home-made passage reactor of continuous flow. Despite the simplicity of the system, the laser energy is better harvested by the carbon microparticles, improving the fabrication efficiency a 15% and enhancing the fluorescence of CQDs by an order of magnitude in comparison with the conventional batch. The flow jet-synthesized CQDs have a mean size of 3 nm and are used for fluorescent imaging of transparent healthy and cancer epithelial human cells. Complete internalization is observed with a short incubation time of 10 min without using any extra additive or processing of the cell culture. The CQDs are well fixed in the organelles of the cell even after its death; hence, this is a simple manner to keep the cell information for prolonged periods of time. Moreover, the integrated photostability of the CQDs internalized in in vitro cells is measured and it remains almost constant during at least 2 h, revealing their outstanding performance as fluorescent labels.

9.
Opt Express ; 26(8): 10762-10772, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29716008

RESUMO

Focusing control of ultrashort pulsed beams is an important research topic, due to its impact to subsequent interaction with matter. In this work, we study the propagation near the focus of ultrashort laser pulses of ~25 fs duration under diffractive focusing. We perform the spatio-spectral and spatio-temporal measurements of their amplitude and phase, complemented by the corresponding simulations. With them, we demonstrate that pulse shaping allows modifying in a controlled way not only the spatio-temporal distribution of the light irradiance in the focal region, but also the way it propagates as well as the frequency distribution within the pulse (temporal chirp). To gain a further intuitive insight, the role of diverse added spectral phase components is analyzed, showing the symmetries that arise for each case. In particular, we compare the effects, similarities and differences of the second and third order dispersion cases.

10.
Phys Chem Chem Phys ; 20(20): 13693-13696, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29748674

RESUMO

In the current communication, the synthesis of metallic Bi nanoparticles with coexisting crystallographic structures (rhombohedral, monoclinic, and cubic) obtained via direct femtosecond laser irradiation of NaBiO3 is demonstrated for the first time. By exploring the use of high laser power values, it is revealed that the promoted laser-mediated reactions lead to the synthesis of coexisting phases in metal nanoparticles, which may be a widely occurring phenomenon in other materials under femtosecond laser irradiation, and a fundamental concern for laser-based nanofabrication.

11.
Opt Lett ; 43(5): 1167-1170, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29489806

RESUMO

We experimentally demonstrate Fresnel holograms able to produce multifocal irradiance patterns with micrometric spatial resolution. These holograms are assessed from the coherent sum of multiple Fresnel lenses. The utilized encoded technique guarantees full control over the reconstructed irradiance patterns due to an optimal codification of the amplitude and phase information of the resulting complex field. From a practical point of view, a phase-only spatial light modulator is used in a couple of experiments addressed to obtain two- and three-dimensional distributions of focal points to excite both linear and non-linear optical phenomena.

12.
Sci Rep ; 8(1): 1884, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382839

RESUMO

In recent years, complex nanocomposites formed by Ag nanoparticles coupled to an α-Ag2WO4 semiconductor network have emerged as promising bactericides, where the semiconductor attracts bacterial agents and Ag nanoparticles neutralize them. However, the production rate of such materials has been limited to transmission electron microscope processing, making it difficult to cross the barrier from basic research to real applications. The interaction between pulsed laser radiation and α-Ag2WO4 has revealed a new processing alternative to scale up the production of the nanocomposite resulting in a 32-fold improvement of bactericidal performance, and at the same time obtaining a new class of spherical AgxWyOz nanoparticles.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Prata/química , Lasers , Luz , Microscopia Eletrônica de Transmissão/métodos , Nanocompostos/química
13.
ACS Omega ; 3(8): 9880-9887, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459116

RESUMO

Bimetallic nanoalloys with a wide variety of structures and compositions have been fabricated through many diverse techniques. Generally, various steps and chemicals are involved in their fabrication. In this study, the synthesis of Ag-Bi nanoalloys by femtosecond laser irradiation of an inorganic oxide Ag2WO4/NaBiO3 target without any chemicals like reducing agents or solvent is presented. The interaction between these materials and the ultrashort pulse of light allows the migration of Ag and Bi atoms from the crystal lattice to the particles surfaces and then to the plasma plume, where the reduction of the positively charged Ag and Bi species in their respective metallic species takes place. Subsequently, the controlled nucleation and growth of the Ag-Bi alloyed nanoparticles occurs in situ during the irradiation process in air. Although at the bulk level, these elements are highly immiscible, it was experimentally demonstrated that at nanoscale, the Ag-Bi nanoalloy can assume a randomly mixed structure with up to 6 ± 1 atom % of Bi solubilized into the face-centered cubic structure of Ag. Furthermore, the Ag-Bi binary system possesses high antibacterial activity against Staphylococcus aureus (methicillin-resistant and methicilin-susceptible), which is interesting for potential antimicrobial applications, consequently increasing their range of applicability. The present results provide potential insights into the structures formed by the Ag-Bi systems at the nanoscale and reveal a new processing method where complex inorganic oxides can be used as precursors for the controlled synthesis of alloyed bimetallic nanoparticles.

14.
Chemphyschem ; 18(9): 1055-1060, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27875011

RESUMO

Solar energy is available over wide geographical areas and its harnessing is becoming an essential tool to satisfy the ever-increasing demand for energy with minimal environmental impact. Solar nanofluids are a novel solar receiver concept for efficient harvesting of solar radiation based on volumetric absorption of directly irradiated nanoparticles in a heat transfer fluid. Herein, the fabrication of a solar nanofluid by pulsed laser ablation in liquids was explored. This study was conducted with the ablation of bulk tin immersed in ethylene glycol with a femtosecond laser. Laser irradiation promotes the formation of tin nanoparticles that are collected in the ethylene glycol as colloids, creating the solar nanofluid. The ability to trap incoming electromagnetic radiation, thermal conductivity, and the stability of the solar nanofluid in comparison with conventional synthesis methods is enhanced.

15.
Opt Express ; 24(14): 15307-18, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410807

RESUMO

We show that a simple diffractive phase element (DPE) can be used to manipulate at will the positions and energy of multiple filaments generated in fused silica under femtosecond pulsed illumination. The method allows obtaining three-dimensional distributions of controlled filaments whose separations can be in the order of few micrometers. With such small distances we are able to study the mutual coherence among filaments from the resulted interference pattern, without needing a two-arm interferometer. The encoding of the DPE into a phase-only spatial light modulator (SLM) provides an extra degree of freedom to the optical set-up, giving more versatility for implementing different DPEs in real time. Our proposal might be particularly suited for applications at which an accurate manipulation of multiple filaments is required.

16.
Sci Rep ; 6: 30478, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27464997

RESUMO

The demand for nanocomposites of graphene and carbonaceous materials decorated with metallic nanoparticles is increasing on account of their applications in science and technology. Traditionally, the production of graphene-metal assemblies is achieved by the non-environmentally friendly reduction of metallic salts in carbonaceous suspensions. However, precursor residues during nanoparticle growth may reduce their surface activity and promote cross-chemical undesired effects. In this work we present a laser-based alternative to synthesize ligand-free gold nanoparticles that are anchored onto the graphene surface in a single reaction step. Laser radiation is used to generate highly pure nanoparticles from a gold disk surrounded by a graphene oxide suspension. The produced gold nanoparticles are directly immobilized onto the graphene surface. Moreover, the presence of graphene oxide influences the size of the nanoparticles and its interaction with the laser, causes only a slight reduction of the material. This work constitutes a green alternative synthesis of graphene-metal assemblies and a practical methodology that may inspire future developments.

17.
Opt Lett ; 39(7): 1740-3, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686593

RESUMO

We show that the amplitude and phase information from a two-dimensional complex field can be synthesized from a phase-only optical element with micrometric resolution. The principle of the method is based on the combination of two spatially sampled phase elements by using a low-pass filter at the Fourier plane of a 4-f optical system. The proposed encoding technique was theoretically demonstrated, as well as experimentally validated with the help of a phase-only spatial light modulator for phase encoding, a conventional CMOS camera to measure the amplitude of the complex field, and a Shack-Hartmann wavefront sensor to determine its phase.

18.
Opt Lett ; 38(10): 1621-3, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938889

RESUMO

We demonstrate the utilization of Dammann lenses codified onto a spatial light modulator (SLM) for triggering non-linear effects. With continuous wave illumination Dammann lenses are binary phase optical elements that generate a set of equal intensity foci. We theoretically calculate the influence of ultrashort pulse illumination on the uniformity of the generated pattern, which is affected by chromatic aberration for pulses with temporal widths lower than 100 fs. The simulations also indicate that acceptable uniformity can be achieved for pulses of several fs by shortening the distance among foci which can be easily modified with the SLM. Multifocal second-harmonic generation (SHG) and on-axis multiple filamentation are produced and actively controlled in ß-BaB2O4 (BBO) and fused silica samples, respectively, with an amplified Ti: Sapphire femtosecond laser of 30 fs pulse duration. Experimental results are in very good agreement with theoretical calculations.

19.
Opt Lett ; 38(4): 440-2, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23455095

RESUMO

We demonstrate efficient generation of wide-field fluorescence signals in two-photon microscopy exploiting diffractive optical elements and short pulses by using a dispersion-compensated beam delivery optics module. Computer-generated holograms are codified onto a phase-only spatial light modulator, which allows for arbitrary single-shot patterning of the sample. Spatiotemporal shaping of the pulse is mandatory to overcome spatial chirp and pulse-front tilt effects that spread both in space and time the irradiance patterns, thus limiting not only the spatial resolution but also the signal-to-noise ratio in two-photon microscopy. By using a multipass amplifier delivering 30 fs, 0.8 mJ pulses at 1 kHz repetition rate, we experimentally demonstrated arbitrary single-shot fluorescence irradiance patterns in Rhodamine B.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Fenômenos Ópticos , Lasers
20.
Opt Lett ; 37(24): 5067-9, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23258007

RESUMO

We experimentally demonstrate an extremely compact and programmable pulse shaper composed of a single phase mask encoded into a spatial light modulator. Its principle of operation is similar to the previously theoretically introduced quasi-direct space-to-time pulse shaper [Opt. Express16, 16993 (2008)], which is based on diffractive optics. The proposed pulse shaper exhibits not only real-time temporal modulation, but also high-efficiency output pulses thanks to an active correction of the wavefront aberrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA