Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38927223

RESUMO

Carbapenemases, a class of enzymes specialized in the hydrolysis of carbapenems, represent a significant threat to global public health. These enzymes are classified into different Ambler's classes based on their active sites, categorized into classes A, D, and B. Among the most prevalent types are IMI/NMC-A, KPC, VIM, IMP, and OXA-48, commonly associated with pathogenic species such as Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The emergence and dissemination of carbapenemase-producing bacteria have raised substantial concerns due to their ability to infect humans and animals (both companion and food-producing) and their presence in environmental reservoirs. Adopting a holistic One Health approach, concerted efforts have been directed toward devising comprehensive strategies to mitigate the impact of antimicrobial resistance dissemination. This entails collaborative interventions, highlighting proactive measures by global organizations like the World Health Organization, the Center for Disease Control and Prevention, and the Food and Agriculture Organization. By synthesizing the evolving landscape of carbapenemase epidemiology in Portugal and tracing the trajectory from initial isolated cases to contemporary reports, this review highlights key factors driving antibiotic resistance, such as antimicrobial use and healthcare practices, and underscores the imperative for sustained vigilance, interdisciplinary collaboration, and innovative interventions to curb the escalating threat posed by antibiotic-resistant pathogens. Finally, it discusses potential alternatives and innovations aimed at tackling carbapenemase-mediated antibiotic resistance, including new therapies, enhanced surveillance, and public awareness campaigns.

2.
Biotechnol J ; 15(12): e2000219, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33063471

RESUMO

Combinatorial cancer therapies mediated by nanomaterials can potentially overcome the limitations of conventional treatments. These therapies are generally investigated using 2D in vitro cancer models, leading to an inaccurate screening. Recently, 3D in vitro spheroids have emerged in the preclinical testing stage of nanomedicines due to their ability to mimic key features of the in vivo solid tumors. Investigate the chemo-photothermal therapy mediated by Doxorubicin and IR780 loaded sulfobetaine methacrylate functionalized nanoparticles, for the first time, using monolayers of cancer cells and spheroids. In the 2D cancer models, the nanomaterials' mediated photothermal therapy, chemotherapy, and chemo-photothermal therapy reduced cancer cells' viability to about 58%, 29%, and 1%, respectively. Interestingly, when the nanomaterials' mediated photothermal therapy is tested on 3D spheroids, no cytotoxic effect is noticed. In contrast, the nanostructures' induced chemotherapy decreased spheroids' viability to 42%. On the other hand, nanomaterials' mediated chemo-photothermal therapy diminished spheroids' viability to 16%, being the most promising therapeutic modality. These results demonstrate the importance of using 3D spheroids during the in vitro screening of single/combinatorial therapies mediated by nanomaterials.


Assuntos
Nanopartículas , Neoplasias , Betaína/análogos & derivados , Humanos , Metacrilatos , Neoplasias/terapia , Fototerapia , Terapia Fototérmica
3.
Nanomedicine (Lond) ; 15(15): 1513-1525, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32552537

RESUMO

The use of nanomedicines for cancer treatment holds a great potential due to their improved efficacy and safety. During the nanomedicine preclinical in vitro evaluation stage, these are mainly tested on cell culture monolayers. However, these 2D models are an unrealistic representation of the in vivo tumors, leading to an inaccurate screening of the candidate formulations. To address this problem, spheroids are emerging as an additional tool to validate the efficacy of new therapeutics due to the ability of these 3D in vitro cancer models to mimic the key features displayed by in vivo solid tumors. In this review, the application of spheroids for the evaluation of nanomedicines' physicochemical properties and therapeutic efficacy is discussed.


Assuntos
Nanomedicina , Neoplasias , Técnicas de Cultura de Células , Humanos , Neoplasias/tratamento farmacológico , Esferoides Celulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA