Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 14: 1180827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37599885

RESUMO

Introduction: Little is known about cognitive control in adults with high-functioning forms of autism spectrum disorder because previous research focused on children and adolescents. Cognitive control is crucial to monitor and readjust behavior after errors to select contextually appropriate reactions. The congruency effect and conflict adaptation are measures of cognitive control. Post-error slowing, error-related negativity and error positivity provide insight into behavioral and electrophysiological correlates of error processing. In children and adolescent with autism spectrum disorder deficits in cognitive control and error processing have been shown by changes in post-error slowing, error-related negativity and error positivity in the flanker task. Methods: We performed a modified Eriksen flanker task in 17 adults with high-functioning autism spectrum disorder and 17 healthy controls. As behavioral measures of cognitive control and error processing, we included reaction times and error rates to calculate congruency effects, conflict adaptation, and post-error slowing. Event-related potentials namely error-related negativity and error positivity were measured to assess error-related brain activity. Results: Both groups of participants showed the expected congruency effects demonstrated by faster and more accurate responses in congruent compared to incongruent trials. Healthy controls exhibited conflict adaptation as they obtained performance benefits after incongruent trials whereas patients with autism spectrum disorder did not. The expected slowing in reaction times after errors was observed in both groups of participants. Individuals with autism spectrum disorder demonstrated enhanced electrophysiological error-processing compared to healthy controls indicated by increased error-related negativity and error positivity difference amplitudes. Discussion: Our findings show that adults with high-functioning autism spectrum disorder do not show the expected upregulation of cognitive control in response to conflicts. This finding implies that previous experiences may have a reduced influence on current behavior in these patients which possibly contributes to less flexible behavior. Nevertheless, we observed intact behavioral reactions after errors indicating that adults with high-functioning autism spectrum disorder can flexibly adjust behavior in response to changed environmental demands when necessary. The enhancement of electrophysiological error-processing indicates that adults with high-functioning autism spectrum disorder demonstrate an extraordinary reactivity toward errors reflecting increased performance monitoring in this subpopulation of autism spectrum disorder patients.

2.
Brain Sci ; 13(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37371448

RESUMO

In everyday verbal communication, auditory speech perception is often disturbed by background noise. Especially in disadvantageous hearing conditions, additional visual articulatory information (e.g., lip movement) can positively contribute to speech comprehension. Patients with schizophrenia (SZs) demonstrate an aberrant ability to integrate visual and auditory sensory input during speech perception. Current findings about underlying neural mechanisms of this deficit are inconsistent. Particularly and despite the importance of early sensory processing in speech perception, very few studies have addressed these processes in SZs. Thus, in the present study, we examined 20 adult subjects with SZ and 21 healthy controls (HCs) while presenting audiovisual spoken words (disyllabic nouns) either superimposed by white noise (-12 dB signal-to-noise ratio) or not. In addition to behavioral data, event-related brain potentials (ERPs) were recorded. Our results demonstrate reduced speech comprehension for SZs compared to HCs under noisy conditions. Moreover, we found altered N1 amplitudes in SZ during speech perception, while P2 amplitudes and the N1-P2 complex were similar to HCs, indicating that there may be disturbances in multimodal speech perception at an early stage of processing, which may be due to deficits in auditory speech perception. Moreover, a positive relationship between fronto-central N1 amplitudes and the positive subscale of the Positive and Negative Syndrome Scale (PANSS) has been observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA