Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 74(1): 88-100.e9, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876804

RESUMO

Eukaryotic elongation factor 2 (eEF2) is an abundant and essential component of the translation machinery. The biogenesis of this 93 kDa multi-domain protein is assisted by the chaperonin TRiC/CCT. Here, we show in yeast cells that the highly conserved protein Hgh1 (FAM203 in humans) is a chaperone that cooperates with TRiC in eEF2 folding. In the absence of Hgh1, a substantial fraction of newly synthesized eEF2 is degraded or aggregates. We solved the crystal structure of Hgh1 and analyzed the interaction of wild-type and mutant Hgh1 with eEF2. These experiments revealed that Hgh1 is an armadillo repeat protein that binds to the dynamic central domain III of eEF2 via a bipartite interface. Hgh1 binding recruits TRiC to the C-terminal eEF2 module and prevents unproductive interactions of domain III, allowing efficient folding of the N-terminal GTPase module. eEF2 folding is completed upon dissociation of TRiC and Hgh1.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Chaperonas Moleculares/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
2.
Biochim Biophys Acta ; 1848(12): 3158-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26449340

RESUMO

ABC transporters are fascinating examples of fine-tuned molecular machines that use the energy from ATP hydrolysis to translocate a multitude of substrates across biological membranes. While structural details have emerged on many members of this large protein superfamily, a number of functional details are still under debate. High resolution structures yield valuable insights into protein function, but it is the combination of structural, functional and dynamic insights that facilitates a complete understanding of the workings of their complex molecular mechanisms. NMR is a technique well-suited to investigate proteins in atomic resolution while taking their dynamic properties into account. It thus nicely complements other structural techniques, such as X-ray crystallography, that have contributed high-resolution data to the architectural understanding of ABC transporters. Here, we describe the heterologous expression of LmrA, an ABC exporter from Lactococcus lactis, in Escherichia coli. This allows for more flexible isotope labeling for nuclear magnetic resonance (NMR) studies and the easy study of LmrA's multidrug resistance phenotype. We use a combination of solid-state magic angle spinning (MAS) on the reconstituted transporter and solution NMR on its isolated nucleotide binding domain to investigate consequences of nucleotide binding to LmrA. We find that nucleotide binding affects the protein globally, but that NMR is also able to pinpoint local dynamic effects to specific residues, such as the Walker A motif's conserved lysine residue.


Assuntos
Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Nucleotídeos/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Ligação Proteica
3.
Proc Natl Acad Sci U S A ; 109(52): 21208-15, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23197838

RESUMO

The eukaryotic chaperonin, TRiC/CCT (TRiC, TCP-1 ring complex; CCT, chaperonin containing TCP-1), uses a built-in lid to mediate protein folding in an enclosed central cavity. Recent structural data suggest an effective size limit for the TRiC folding chamber of ∼70 kDa, but numerous chaperonin substrates are substantially larger. Using artificial fusion constructs with actin, an obligate chaperonin substrate, we show that TRiC can mediate folding of large proteins by segmental or domain-wise encapsulation. Single or multiple protein domains up to ∼70 kDa are stably enclosed by stabilizing the ATP-hydrolysis transition state of TRiC. Additional domains, connected by flexible linkers that pass through the central opening of the folding chamber, are excluded and remain accessible to externally added protease. Experiments with the physiological TRiC substrate hSnu114, a 109-kDa multidomain protein, suggest that TRiC has the ability to recognize domain boundaries in partially folded intermediates. In the case of hSnu114, this allows the selective encapsulation of the C-terminal ∼45-kDa domain and segments thereof, presumably reflecting a stepwise folding mechanism. The capacity of the eukaryotic chaperonin to overcome the size limitation of the folding chamber may have facilitated the explosive expansion of the multidomain proteome in eukaryotes.


Assuntos
Actinas/química , Actinas/metabolismo , Chaperonina com TCP-1/química , Chaperonina com TCP-1/metabolismo , Dobramento de Proteína , Proteínas de Fluorescência Verde/metabolismo , Humanos , Modelos Biológicos , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Especificidade por Substrato
4.
Structure ; 20(5): 814-25, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22503819

RESUMO

TRiC/CCT is a highly conserved and essential chaperonin that uses ATP cycling to facilitate folding of approximately 10% of the eukaryotic proteome. This 1 MDa hetero-oligomeric complex consists of two stacked rings of eight paralogous subunits each. Previously proposed TRiC models differ substantially in their subunit arrangements and ring register. Here, we integrate chemical crosslinking, mass spectrometry, and combinatorial modeling to reveal the definitive subunit arrangement of TRiC. In vivo disulfide mapping provided additional validation for the crosslinking-derived arrangement as the definitive TRiC topology. This subunit arrangement allowed the refinement of a structural model using existing X-ray diffraction data. The structure described here explains all available crosslink experiments, provides a rationale for previously unexplained structural features, and reveals a surprising asymmetry of charges within the chaperonin folding chamber.


Assuntos
Chaperonina com TCP-1/química , Animais , Bovinos , Chaperonina com TCP-1/metabolismo , Eucariotos/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem , Difração de Raios X
5.
J Biol Chem ; 287(4): 2342-52, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22121193

RESUMO

c-Type cytochromes are widespread proteins, fundamental for respiration or photosynthesis in most cells. They contain heme covalently bound to protein in a highly conserved, highly stereospecific post-translational modification. In many bacteria, mitochondria, and archaea this heme attachment is catalyzed by the cytochrome c maturation (Ccm) proteins. Here we identify and characterize a covalent, ternary complex between the heme chaperone CcmE, heme, and cytochrome c. Formation of the complex from holo-CcmE occurs in vivo and in vitro and involves the specific heme-binding residues of both CcmE and apocytochrome c. The enhancement and attenuation of the amounts of this complex correlates completely with known consequences of mutations in genes for other Ccm proteins. We propose the complex is a trapped catalytic intermediate in the cytochrome c biogenesis process, at the point of heme transfer from CcmE to the cytochrome, the key step in the maturation pathway.


Assuntos
Proteínas da Membrana Bacteriana Externa/biossíntese , Citocromos c/biossíntese , Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Heme/metabolismo , Hemeproteínas/biossíntese , Biossíntese de Proteínas/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Citocromos c/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Heme/genética , Hemeproteínas/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA