Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11606-11614, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38874561

RESUMO

Global atmospheric emissions of perfluorocyclobutane (c-C4F8, PFC-318), a potent greenhouse gas, have increased rapidly in recent years. Combining atmospheric observations made at nine Chinese sites with a Lagrangian dispersion model-based Bayesian inversion technique, we show that PFC-318 emissions in China grew by approximately 70% from 2011 to 2020, rising from 0.65 (0.54-0.72) Gg year-1 in 2011 to 1.12 (1.05-1.19) Gg year-1 in 2020. The PFC-318 emission increase from China played a substantial role in the overall increase in global emissions during the study period, contributing 58% to the global total emission increase. This growth predominantly originated in eastern China. The regions with high emissions of PFC-318 in China overlap with areas densely populated with polytetrafluoroethylene (PTFE) factories, implying that fluoropolymer factories are important sources of PFC-318 emissions in China. Our investigation reveals an emission factor of approximately 3.02 g of byproduct PFC-318 emissions per kg of hydrochlorofluorocarbon-22 (HCFC-22) feedstock use in the production of tetrafluoroethylene (TFE) (for PTFE production) and hexafluoropropylene (HFP) if we assume all HCFC-22 produced for feedstock uses in China are pyrolyzed to produce PTFE and HFP. Further facility-level sampling and analysis are needed for a more precise evaluation of emissions from these factories.


Assuntos
Poluentes Atmosféricos , Atmosfera , China , Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental , Fluorocarbonos/análise , Teorema de Bayes , Politetrafluoretileno , Ciclobutanos
2.
Nat Commun ; 15(1): 1997, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443346

RESUMO

Sulfur hexafluoride (SF6) is a potent greenhouse gas. Here we use long-term atmospheric observations to determine SF6 emissions from China between 2011 and 2021, which are used to evaluate the Chinese national SF6 emission inventory and to better understand the global SF6 budget. SF6 emissions in China substantially increased from 2.6 (2.3-2.7, 68% uncertainty) Gg yr-1 in 2011 to 5.1 (4.8-5.4) Gg yr-1 in 2021. The increase from China is larger than the global total emissions rise, implying that it has offset falling emissions from other countries. Emissions in the less-populated western regions of China, which have potentially not been well quantified in previous measurement-based estimates, contribute significantly to the national SF6 emissions, likely due to substantial power generation and transmission in that area. The CO2-eq emissions of SF6 in China in 2021 were 125 (117-132) million tonnes (Mt), comparable to the national total CO2 emissions of several countries such as the Netherlands or Nigeria. The increasing SF6 emissions offset some of the CO2 reductions achieved through transitioning to renewable energy in the power industry, and might hinder progress towards achieving China's goal of carbon neutrality by 2060 if no concrete control measures are implemented.

3.
Environ Sci Technol ; 57(37): 13925-13936, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37656597

RESUMO

Emissions of chloroform (CHCl3), a short-lived halogenated substance not currently controlled under the Montreal Protocol on Substances that Deplete the Ozone Layer, are offsetting some of the achievements of the Montreal Protocol. In this study, emissions of CHCl3 from China were derived by atmospheric measurement-based "top-down" inverse modeling and a sector-based "bottom-up" inventory method. Top-down CHCl3 emissions grew from 78 (72-83) Gg yr-1 in 2011 to a maximum of 193 (178-204) Gg yr-1 in 2017, followed by a decrease to 147 (138-154) Gg yr-1 in 2018, after which emissions remained relatively constant through 2020. The changes in emissions from China could explain all of the global changes during the study period. The CHCl3 emissions in China were dominated by anthropogenic sources, such as byproduct emissions during disinfection and leakage from chloromethane industries. Had emissions continued to grow at the rate observed up to 2017, a delay of several years in Antarctic ozone layer recovery could have occurred. However, this delay will be largely avoided if global CHCl3 emissions remain relatively constant in the future, as they have between 2018 and 2020.


Assuntos
Clorofórmio , Ozônio Estratosférico , Regiões Antárticas , China , Desinfecção
4.
Environ Pollut ; 316(Pt 1): 120570, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328288

RESUMO

Global concentrations (or mole fractions) and emissions of ozone-depleting substances (ODSs) and their hydrofluorocarbon (HFCs) substitutes that are controlled by the Montreal Protocol and its Amendments and adjustments (MP) are of great interest to both the scientific community and public. Previous studies on global concentrations and emissions have mostly relied on ground-based observations. Here, we assess the global concentrations and emissions of eight MP controlled substances and methyl chloride from ACE-FTS (Atmospheric Chemistry Experiment high-resolution infrared Fourier transform spectrometer) satellite observations: CFC-11 (CFCl3), CFC-12 (CF2Cl2), CCl4, HCFC-22 (CHClF2), HCFC-141b (C2H3Cl2F), HCFC-142b (C2H3ClF2), HFC-23 (CHF3), HFC-134a (C2H2F4), and CH3Cl. Results show that the ACE-FTS satellite observations can be used to derive the concentrations and emissions of these ODSs, HFCs, and CH3Cl, as they are consistent with those derived from the ground-based observations. Our findings imply that the changes in the concentrations and emissions of the ODSs and HFCs closely match the regulatory status of the MP, and satellite observations can be used to monitor the past and future progress of the MP.


Assuntos
Ozônio
5.
Nat Commun ; 12(1): 7279, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907196

RESUMO

With the successful implementation of the Montreal Protocol on Substances that Deplete the Ozone Layer, the atmospheric abundance of ozone-depleting substances continues to decrease slowly and the Antarctic ozone hole is showing signs of recovery. However, growing emissions of unregulated short-lived anthropogenic chlorocarbons are offsetting some of these gains. Here, we report an increase in emissions from China of the industrially produced chlorocarbon, dichloromethane (CH2Cl2). The emissions grew from 231 (213-245) Gg yr-1 in 2011 to 628 (599-658) Gg yr-1 in 2019, with an average annual increase of 13 (12-15) %, primarily from eastern China. The overall increase in CH2Cl2 emissions from China has the same magnitude as the global emission rise of 354 (281-427) Gg yr-1 over the same period. If global CH2Cl2 emissions remain at 2019 levels, they could lead to a delay in Antarctic ozone recovery of around 5 years compared to a scenario with no CH2Cl2 emissions.

6.
Nature ; 590(7846): 428-432, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568809

RESUMO

The atmospheric concentration of trichlorofluoromethane (CFC-11) has been in decline since the production of ozone-depleting substances was phased out under the Montreal Protocol1,2. Since 2013, the concentration decline of CFC-11 slowed unexpectedly owing to increasing emissions, probably from unreported production, which, if sustained, would delay the recovery of the stratospheric ozone layer1-12. Here we report an accelerated decline in the global mean CFC-11 concentration during 2019 and 2020, derived from atmospheric concentration measurements at remote sites around the world. We find that global CFC-11 emissions decreased by 18 ± 6 gigagrams per year (26 ± 9 per cent; one standard deviation) from 2018 to 2019, to a 2019 value (52 ± 10 gigagrams per year) that is similar to the 2008-2012 mean. The decline in global emissions suggests a substantial decrease in unreported CFC-11 production. If the sharp decline in unexpected global emissions and unreported production is sustained, any associated future ozone depletion is likely to be limited, despite an increase in the CFC-11 bank (the amount of CFC-11 produced, but not yet emitted) by 90 to 725 gigagrams by the beginning of 2020.

7.
Nature ; 590(7846): 433-437, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568814

RESUMO

Emissions of ozone-depleting substances, including trichlorofluoromethane (CFC-11), have decreased since the mid-1980s in response to the Montreal Protocol1,2. In recent years, an unexpected increase in CFC-11 emissions beginning in 2013 has been reported, with much of the global rise attributed to emissions from eastern China3,4. Here we use high-frequency atmospheric mole fraction observations from Gosan, South Korea and Hateruma, Japan, together with atmospheric chemical transport-model simulations, to investigate regional CFC-11 emissions from eastern China. We find that CFC-11 emissions returned to pre-2013 levels in 2019 (5.0 ± 1.0 gigagrams per year in 2019, compared to 7.2 ± 1.5 gigagrams per year for 2008-2012, ±1 standard deviation), decreasing by 10 ± 3 gigagrams per year since 2014-2017. Furthermore, we find that in this region, carbon tetrachloride (CCl4) and dichlorodifluoromethane (CFC-12) emissions-potentially associated with CFC-11 production-were higher than expected after 2013 and then declined one to two years before the CFC-11 emissions reduction. This suggests that CFC-11 production occurred in eastern China after the mandated global phase-out, and that there was a subsequent decline in production during 2017-2018. We estimate that the amount of the CFC-11 bank (the amount of CFC-11 produced, but not yet emitted) in eastern China is up to 112 gigagrams larger in 2019 compared to pre-2013 levels, probably as a result of recent production. Nevertheless, it seems that any substantial delay in ozone-layer recovery has been avoided, perhaps owing to timely reporting3,4 and subsequent action by industry and government in China5,6.

8.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495345

RESUMO

Global and regional atmospheric measurements and modeling can play key roles in discovering and quantifying unexpected nascent emissions of environmentally important substances. We focus here on three hydrochlorofluorocarbons (HCFCs) that are restricted by the Montreal Protocol because of their roles in stratospheric ozone depletion. Based on measurements of archived air samples and on in situ measurements at stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, we report global abundances, trends, and regional enhancements for HCFC-132b ([Formula: see text]), which is newly discovered in the atmosphere, and updated results for HCFC-133a ([Formula: see text]) and HCFC-31 ([Formula: see text]ClF). No purposeful end-use is known for any of these compounds. We find that HCFC-132b appeared in the atmosphere 20 y ago and that its global emissions increased to 1.1 Gg⋅y-1 by 2019. Regional top-down emission estimates for East Asia, based on high-frequency measurements for 2016-2019, account for ∼95% of the global HCFC-132b emissions and for ∼80% of the global HCFC-133a emissions of 2.3 Gg⋅y-1 during this period. Global emissions of HCFC-31 for the same period are 0.71 Gg⋅y-1 Small European emissions of HCFC-132b and HCFC-133a, found in southeastern France, ceased in early 2017 when a fluorocarbon production facility in that area closed. Although unreported emissive end-uses cannot be ruled out, all three compounds are most likely emitted as intermediate by-products in chemical production pathways. Identification of harmful emissions to the atmosphere at an early stage can guide the effective development of global and regional environmental policy.

9.
J Geophys Res Atmos ; 126(16): e2021JD034888, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-35847447

RESUMO

The perfluorocarbons (PFCs), tetrafluoromethane (CF4) and hexafluoroethane (C2F6), are potent greenhouse gases with very long atmospheric lifetimes. They are emitted almost entirely from industrial sources, including the aluminum and rare earth metal smelting industries that emit them as by-products, and the semiconductor and flat panel display manufacturing industries that use them and vent unutilized amounts to the atmosphere. Despite extensive industrial efforts to quantify and curb these emissions, "top-down" PFC emission estimates derived from atmospheric measurements continue to rise and are significantly greater than reported process- and inventory-based "bottom-up" emissions. In this study, we estimate emissions of CF4 and C2F6 from East Asia, where PFC emitting industries are heavily concentrated, using a top-down approach (a Bayesian inversion) with high-frequency atmospheric measurements at Gosan (Jeju Island, South Korea) for 2008-2019. We also compile and analyze the available bottom-up CF4 and C2F6 emissions in East Asia from industrial and government reports. Our results suggest that the observed increases in global PFC emissions since 2015 are driven primarily by China's aluminum industry, with significant contributions from Japan's and Korea's semiconductor industry. Our analysis suggests that Chinese emissions occur predominantly from the aluminum industry, although their emissions per production ratio may be improving. Our results for Japan and Korea find significant discrepancies between top-down and bottom-up emissions estimates, suggesting that the effectiveness of emission reduction systems (abatement) used in their semiconductor industries may be overestimated. Overall, our top-down results for East Asia contribute significantly to reducing the gap in the global PFC emission budgets.

10.
Nat Commun ; 11(1): 3672, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724072

RESUMO

Nitrous oxide (N2O) is a powerful greenhouse gas and ozone depleting substance, but its natural sources, especially marine emissions, are poorly constrained. Localized high concentrations have been observed in the oxygen minimum zones (OMZs) of the tropical Pacific but the impacts of El Niño cycles on this key source region are unknown. Here we show atmospheric monitoring station measurements in Samoa combined with atmospheric back-trajectories provide novel information on N2O variability across the South Pacific. Remarkable elevations in Samoan concentrations are obtained in air parcels that pass over the OMZ. The data further reveal that average concentrations of these OMZ air parcels are augmented during La Niña and decrease sharply during El Niño. The observed natural spatial heterogeneities and temporal dynamics in marine N2O emissions can confound attempts to develop future projections of this climatically active gas as low oxygen zones are predicted to expand and El Niño cycles change.

11.
J Geophys Res Atmos ; 124(4): 2318-2335, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30984484

RESUMO

Very short-lived substances (VSLS), including dichloromethane (CH2Cl2), chloroform (CHCl3), perchloroethylene (C2Cl4), and 1,2-dichloroethane (C2H4Cl2), are a stratospheric chlorine source and therefore contribute to ozone depletion. We quantify stratospheric chlorine trends from these VSLS (VSLCltot) using a chemical transport model and atmospheric measurements, including novel high-altitude aircraft data from the NASA VIRGAS (2015) and POSIDON (2016) missions. We estimate VSLCltot increased from 69 (±14) parts per trillion (ppt) Cl in 2000 to 111 (±22) ppt Cl in 2017, with >80% delivered to the stratosphere through source gas injection, and the remainder from product gases. The modeled evolution of chlorine source gas injection agrees well with historical aircraft data, which corroborate reported surface CH2Cl2 increases since the mid-2000s. The relative contribution of VSLS to total stratospheric chlorine increased from ~2% in 2000 to ~3.4% in 2017, reflecting both VSLS growth and decreases in long-lived halocarbons. We derive a mean VSLCltot growth rate of 3.8 (±0.3) ppt Cl/year between 2004 and 2017, though year-to-year growth rates are variable and were small or negative in the period 2015-2017. Whether this is a transient effect, or longer-term stabilization, requires monitoring. In the upper stratosphere, the modeled rate of HCl decline (2004-2017) is -5.2% per decade with VSLS included, in good agreement to ACE satellite data (-4.8% per decade), and 15% slower than a model simulation without VSLS. Thus, VSLS have offset a portion of stratospheric chlorine reductions since the mid-2000s.

12.
Proc Natl Acad Sci U S A ; 114(21): 5373-5377, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28416657

RESUMO

The growth in global methane (CH4) concentration, which had been ongoing since the industrial revolution, stalled around the year 2000 before resuming globally in 2007. We evaluate the role of the hydroxyl radical (OH), the major CH4 sink, in the recent CH4 growth. We also examine the influence of systematic uncertainties in OH concentrations on CH4 emissions inferred from atmospheric observations. We use observations of 1,1,1-trichloroethane (CH3CCl3), which is lost primarily through reaction with OH, to estimate OH levels as well as CH3CC3 emissions, which have uncertainty that previously limited the accuracy of OH estimates. We find a 64-70% probability that a decline in OH has contributed to the post-2007 methane rise. Our median solution suggests that CH4 emissions increased relatively steadily during the late 1990s and early 2000s, after which growth was more modest. This solution obviates the need for a sudden statistically significant change in total CH4 emissions around the year 2007 to explain the atmospheric observations and can explain some of the decline in the atmospheric 13CH4/12CH4 ratio and the recent growth in C2H6 Our approach indicates that significant OH-related uncertainties in the CH4 budget remain, and we find that it is not possible to implicate, with a high degree of confidence, rapid global CH4 emissions changes as the primary driver of recent trends when our inferred OH trends and these uncertainties are considered.

13.
J Geophys Res Atmos ; 122(21): 11914-11933, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38515436

RESUMO

An accurate estimate of global hydroxyl radical (OH) abundance is important for projections of air quality, climate, and stratospheric ozone recovery. As the atmospheric mixing ratios of methyl chloroform (CH3CCl3) (MCF), the commonly used OH reference gas, approaches zero, it is important to find alternative approaches to infer atmospheric OH abundance and variability. The lack of global bottom-up emission inventories is the primary obstacle in choosing a MCF alternative. We illustrate that global emissions of long-lived trace gases can be inferred from their observed mixing ratio differences between the Northern Hemisphere (NH) and Southern Hemisphere (SH), given realistic estimates of their NH-SH exchange time, the emission partitioning between the two hemispheres, and the NH versus SH OH abundance ratio. Using the observed long-term trend and emissions derived from the measured hemispheric gradient, the combination of HFC-32 (CH2F2), HFC-134a (CH2FCF3, HFC-152a (CH3CHF2), and HCFC-22 (CHClF2), instead of a single gas, will be useful as a MCF alternative to infer global and hemispheric OH abundance and trace gas lifetimes. The primary assumption on which this multispecies approach relies is that the OH lifetimes can be estimated by scaling the thermal reaction rates of a reference gas at 272 K on global and hemispheric scales. Thus, the derived hemispheric and global OH estimates are forced to reconcile the observed trends and gradient for all four compounds simultaneously. However, currently, observations of these gases from the surface networks do not provide more accurate OH abundance estimate than that from MCF.

14.
Proc Natl Acad Sci U S A ; 112(19): 5927-31, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918401

RESUMO

We infer global and regional emissions of five of the most abundant hydrofluorocarbons (HFCs) using atmospheric measurements from the Advanced Global Atmospheric Gases Experiment and the National Institute for Environmental Studies, Japan, networks. We find that the total CO2-equivalent emissions of the five HFCs from countries that are required to provide detailed, annual reports to the United Nations Framework Convention on Climate Change (UNFCCC) increased from 198 (175-221) Tg-CO2-eq ⋅ y(-1) in 2007 to 275 (246-304) Tg-CO2-eq ⋅ y(-1) in 2012. These global warming potential-weighted aggregated emissions agree well with those reported to the UNFCCC throughout this period and indicate that the gap between reported emissions and global HFC emissions derived from atmospheric trends is almost entirely due to emissions from nonreporting countries. However, our measurement-based estimates of individual HFC species suggest that emissions, from reporting countries, of the most abundant HFC, HFC-134a, were only 79% (63-95%) of the UNFCCC inventory total, while other HFC emissions were significantly greater than the reported values. These results suggest that there are inaccuracies in the reporting methods for individual HFCs, which appear to cancel when aggregated together.

15.
Artigo em Inglês | MEDLINE | ID: mdl-26753167

RESUMO

The growing awareness of climate change/global warming, and continuing concerns regarding stratospheric ozone depletion, will require continued measurements and standards for many compounds, in particular halocarbons that are linked to these issues. In order to track atmospheric mole fractions and assess the impact of policy on emission rates, it is necessary to demonstrate measurement equivalence at the highest levels of accuracy for assigned values of standards. Precise measurements of these species aid in determining small changes in their atmospheric abundance. A common source of standards/scales and/or well-documented agreement of different scales used to calibrate the measurement instrumentation are key to understanding many sets of data reported by researchers. This report describes the results of a comparison study among National Metrology Institutes and atmospheric research laboratories for the chlorofluorocarbons (CFCs) dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and 1,1,2-trichlorotrifluoroethane (CFC-113); the hydrochlorofluorocarbons (HCFCs) chlorodifluoromethane (HCFC-22) and 1-chloro-1,1-difluoroethane (HCFC-142b); and the hydrofluorocarbon (HFC) 1,1,1,2-tetrafluoroethane (HFC-134a), all in a dried whole air sample. The objective of this study is to compare calibration standards/scales and the measurement capabilities of the participants for these halocarbons at trace atmospheric levels. The results of this study show agreement among four independent calibration scales to better than 2.5% in almost all cases, with many of the reported agreements being better than 1.0%.

16.
Environ Sci Technol ; 48(1): 491-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24298975

RESUMO

The sources of halogenated compounds in East Asia associated with stratospheric ozone depletion and climate change are relatively poorly understood. High-precision in situ measurements of 18 halogenated compounds and carbonyl sulfide (COS) made at Gosan, Jeju Island, Korea, from November 2007 to December 2011 were analyzed by a positive matrix factorization (PMF). Seven major industrial sources were identified from the enhanced concentrations of halogenated compounds observed at Gosan and corresponding concentration-based source contributions were also suggested: primary aluminum production explaining 37% of total concentration enhancements, solvent usage of which source apportionment is 25%, fugitive emissions from HCFC/HFC production with 11%, refrigerant replacements (9%), semiconductor/electronics industry (9%), foam blowing agents (6%), and fumigation (3%). Statistical trajectory analysis was applied to specify the potential emission regions for seven sources using back trajectories. Primary aluminum production, solvent usage and fugitive emission sources were mainly contributed by China. Semiconductor/electronics sources were dominantly located in Korea. Refrigerant replacement, fumigation and foam blowing agent sources were spread throughout East Asian countries. The specified potential source regions are consistent with country-based consumptions and emission patterns, verifying the PMF analysis results. The industry-based emission sources of halogenated compounds identified in this study help improve our understanding of the East Asian countries' industrial contributions to halogenated compound emissions.


Assuntos
Poluentes Atmosféricos/análise , Mudança Climática , Monitoramento Ambiental/métodos , Hidrocarbonetos Halogenados/análise , Indústrias , Modelos Teóricos , Ásia Oriental , Análise dos Mínimos Quadrados , Estações do Ano
17.
Proc Natl Acad Sci U S A ; 110(6): 2029-34, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23341630

RESUMO

Nitrogen trifluoride (NF(3)) has potential to make a growing contribution to the Earth's radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a revision of our previous calibration and using an expanded set of atmospheric measurements together with an atmospheric model and inverse method, we estimate that the global emissions of NF(3) in 2011 were 1.18 ± 0.21 Gg⋅y(-1), or ∼20 Tg CO(2)-eq⋅y(-1) (carbon dioxide equivalent emissions based on a 100-y global warming potential of 16,600 for NF(3)). The 2011 global mean tropospheric dry air mole fraction was 0.86 ± 0.04 parts per trillion, resulting from an average emissions growth rate of 0.09 Gg⋅y(-2) over the prior decade. In terms of CO(2) equivalents, current NF(3) emissions represent between 17% and 36% of the emissions of other long-lived fluorinated compounds from electronics manufacture. We also estimate that the emissions benefit of using NF(3) over hexafluoroethane (C(2)F(6)) in electronics manufacture is significant-emissions of between 53 and 220 Tg CO(2)-eq⋅y(-1) were avoided during 2011. Despite these savings, total NF(3) emissions, currently ∼10% of production, are still significantly larger than expected assuming global implementation of ideal industrial practices. As such, there is a continuing need for improvements in NF(3) emissions reduction strategies to keep pace with its increasing use and to slow its rising contribution to anthropogenic climate forcing.

18.
Anal Chem ; 84(11): 4798-804, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22607353

RESUMO

We present an analytical method for the in situ measurement of atmospheric nitrogen trifluoride (NF(3)), an anthropogenic gas with a 100-year global warming potential of over 16,000. This potent greenhouse gas has a rising atmospheric abundance due to its emission from a growing number of manufacturing processes and an expanding end-use market. Here we present a modified version of the "Medusa" preconcentration gas chromatography/mass spectrometry (GC/MS) system of Miller, B. R.; Weiss, R. F.; Salameh, P. K.; Tanhua, T.; Greally, B. R.; Mühle, J.; Simmonds, P. G. Anal. Chem.2008, 80 (5), 1536-1545. By altering the techniques of gas separation and chromatography after initial preconcentration, we are now able to make atmospheric measurements of NF(3) with relative precision <2% (1σ) for current background clean air samples. Importantly, this method augments the currently operational Medusa system, so that the quality of data for species already being measured is not compromised and NF(3) is measured from the same preconcentrated sample. We present the first in situ measurements of NF(3) from La Jolla, California made 11 times daily, illustrating how global deployment of this technique within the AGAGE (Advanced Global Atmospheric Gases Experiment) network could facilitate estimation of global and regional NF(3) emissions over the coming years.

19.
Environ Sci Technol ; 45(13): 5668-75, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21649439

RESUMO

High-frequency in situ measurements at Gosan (Jeju Island, Korea) during November 2007 to December 2008 have been combined with interspecies correlation analysis to estimate national emissions of halogenated compounds (HCs) in East Asia, including the chlorofluorocarbons (CFCs), halons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF(6)), and other chlorinated and brominated compounds. Our results suggest that overall China is the dominant emitter of HCs in East Asia, however significant emissions are also found in South Korea, Japan and Taiwan for HFC-134a, HFC-143a, C(2)F(6), SF(6), CH(3)CCl(3), and HFC-365mfc. The combined emissions of CFCs, halon-1211, HCFCs, HFCs, PFCs, and SF(6) from all four countries in 2008 are 25.3, 1.6, 135, 42.6, 3.6, and 2.0 kt/a, respectively. They account for approximately 15%, 26%, 29%, 16%, 32%, and 26.5% of global emissions, respectively. Our results show signs that Japan has successfully phased out CFCs and HCFCs in compliance with the Montreal Protocol (MP), Korea has started transitioning from HCFCs to HFCs, while China still significantly consumes HCFCs. Taiwan, while not directly regulated under the MP, is shown to have adapted the use of HFCs. Combined analysis of emission rates and the interspecies correlation matrix presented in this study proves to be a powerful tool for monitoring and diagnosing changes in consumption of HCs in East Asia.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/estatística & dados numéricos , Hidrocarbonetos Halogenados/análise , Cromatografia Gasosa , Monitoramento Ambiental/métodos , Ásia Oriental , Geografia
20.
J Phys Chem A ; 112(49): 12657-66, 2008 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19053541

RESUMO

In this work, potential atmospheric loss processes for SO2F2, a commercially used biocide (fumigant), have been studied and its global warming potential calculated. Rate coefficients for the gas-phase reactions OH + SO2F2 --> products, k1, and Cl + SO2F2 --> products, k4, were determined using a relative rate technique to be k1 < 1 x 10(-16) cm3 molecule-1 s-1 at 296 and 333 K and k4(296 K) < 5 x 10(-17) cm3 molecule(-1) s(-1). UV absorption cross sections of SO2F2 were measured at 184.9, 193, and 213.9 nm, and its photolysis quantum yield at 193 nm was determined to be <0.02. The atmospheric lifetime of SO2F2 with respect to loss by OH, Cl, and O(1D) reaction and UV photodissociation is estimated to be >300, >10000, 700, and >4700 years, respectively. The stratospheric lifetime of SO2F2 is calculated using a two-dimensional model to be 630 years. The global warming potential (GWP) for SO2F2 was calculated to be 4780 for the 100 year time horizon using infrared absorption cross sections measured in this work and a SO2F2 globally averaged atmospheric lifetime of 36 years, which is determined primarily by ocean uptake, reported by Mühle et al. (Mühle, J.; Huang, J.; Weiss, R. F.; Prinn, R. G.; Miller, B. R.; Salameh, P. K.; Harth, C. M.; Fraser, P. J.; Porter, L. W.; Greally, B. R.; O'Doherty, S.; Simonds, P. G. J. Geophys. Res., submitted for publication, 2008). Reaction channels and the possible formation of stable adducts in reactions 1 and 4 were evaluated using ab initio, CCSD(T), and density functional theory, B3P86, quantum mechanical electronic structure calculations. The most likely reaction product channels were found to be highly endothermic, consistent with the upper limits of the rate coefficients measured in this work.


Assuntos
Atmosfera/química , Efeito Estufa , Teoria Quântica , Ácidos Sulfínicos/química , Absorção , Cloro/química , Elétrons , Hidróxidos/química , Cinética , Espectrofotometria Ultravioleta , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA