Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 9(11): 3521-3530, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31554715

RESUMO

The genus Aethionema is a sister-group to the core-group of the Brassicaceae family that includes Arabidopsis thaliana and the Brassica crops. Thus, Aethionema is phylogenetically well-placed for the investigation and understanding of genome and trait evolution across the family. We aimed to improve the quality of the reference genome draft version of the annual species Aethionema arabicum Second, we constructed the first Ae. arabicum genetic map. The improved reference genome and genetic map enabled the development of each other. We started with the initially published genome (version 2.5). PacBio and MinION sequencing together with genetic map v2.5 were incorporated to produce the new reference genome v3.0. The improved genome contains 203 MB of sequence, with approximately 94% of the assembly made up of called (non-gap) bases, assembled into 2,883 scaffolds (with only 6% of the genome made up of non-called bases (Ns)). The N50 (10.3 MB) represents an 80-fold increase over the initial genome release. We generated a Recombinant Inbred Line (RIL) population that was derived from two ecotypes: Cyprus and Turkey (the reference genotype. Using a Genotyping by Sequencing (GBS) approach, we generated a high-density genetic map with 749 (v2.5) and then 632 SNPs (v3.0) was generated. The genetic map and reference genome were integrated, thus greatly improving the scaffolding of the reference genome into 11 linkage groups. We show that long-read sequencing data and genetics are complementary, resulting in an improved genome assembly in Ae. arabicum They will facilitate comparative genetic mapping work for the Brassicaceae family and are also valuable resources to investigate wide range of life history traits in Aethionema.


Assuntos
Brassicaceae/genética , Mapeamento Cromossômico , Genoma de Planta , Ligação Genética , Polimorfismo de Nucleotídeo Único
2.
Genome Biol Evol ; 9(12): 3384-3397, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216360

RESUMO

Plant genomes encode many lineage-specific, unique transcription factors. Expansion of such gene families has been previously found to coincide with the evolution of morphological complexity, although comparative analyses have been hampered by severe sampling bias. Here, we make use of the recently increased availability of plant genomes. We have updated and expanded previous rule sets for domain-based classification of transcription associated proteins (TAPs), comprising transcription factors and transcriptional regulators. The genome-wide annotation of these protein families has been analyzed and made available via the novel TAPscan web interface. We find that many TAP families previously thought to be specific for land plants actually evolved in streptophyte (charophyte) algae; 26 out of 36 TAP family gains are inferred to have occurred in the common ancestor of the Streptophyta (uniting the land plants-Embryophyta-with their closest algal relatives). In contrast, expansions of TAP families were found to occur throughout streptophyte evolution. 17 out of 76 expansion events were found to be common to all land plants and thus probably evolved concomitant with the water-to-land-transition.


Assuntos
Evolução Molecular , Genoma de Planta , Estreptófitas/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Análise por Conglomerados , Bases de Dados Genéticas , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas/classificação , Plantas/genética , Estreptófitas/classificação , Transcriptoma
3.
Curr Biol ; 27(18): 2763-2773.e5, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28889978

RESUMO

The endosymbiotic acquisition of mitochondria and plastids more than 1 Ga ago profoundly impacted eukaryote evolution. At the heart of understanding organelle evolution is the re-arrangement of the endosymbiont proteome into a host-controlled organellar proteome. However, early stages in this process as well as the timing of events that underlie organelle integration remain poorly understood. The amoeba Paulinella chromatophora contains cyanobacterium-derived photosynthetic organelles, termed "chromatophores," that were acquired more recently (around 100 Ma ago). To explore the re-arrangement of an organellar proteome during its integration into a eukaryotic host cell, here we characterized the chromatophore proteome by protein mass spectrometry. Apparently, genetic control over the chromatophore has shifted substantially to the nucleus. Two classes of nuclear-encoded proteins-which differ in protein length-are imported into the chromatophore, most likely through independent pathways. Long imported proteins carry a putative, conserved N-terminal targeting signal, and many specifically fill gaps in chromatophore-encoded metabolic pathways or processes. Surprisingly, upon heterologous expression in a plant cell, the putative chromatophore targeting signal conferred chloroplast localization. This finding suggests common features in the protein import pathways of chromatophores and plastids, two organelles that evolved independently and more than 1 Ga apart from each other. By combining experimental data with in silico predictions, we provide a comprehensive catalog of almost 450 nuclear-encoded, chromatophore-targeted proteins. Interestingly, most imported proteins seem to derive from ancestral host genes, suggesting that the re-targeting of nuclear-encoded proteins that resulted from endosymbiotic gene transfers plays only a minor role at the onset of chromatophore integration.


Assuntos
Cercozoários/fisiologia , Cromatóforos/fisiologia , Evolução Molecular , Transferência Genética Horizontal , Proteoma/análise , Proteínas de Protozoários/análise , Espectrometria de Massas , Redes e Vias Metabólicas , Análise de Sequência de Proteína , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA