Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732438

RESUMO

Salinity stress is a major factor affecting the nutritional and metabolic profiles of crops, thus hindering optimal yield and productivity. Recent advances in nanotechnology propose an avenue for the use of nano-fertilizers as a potential solution for better nutrient management and stress mitigation. This study aimed to evaluate the benefits of conventional and nano-fertilizers (nano-Zn/nano-Si) on maize and subcellular level changes in its ionomic and metabolic profiles under salt stress conditions. Zinc and silicon were applied both in conventional and nano-fertilizer-using farms under stress (100 mM NaCl) and normal conditions. Different ions, sugars, and organic acids (OAs) were determined using ion chromatography and inductively coupled plasma mass spectroscopy (ICP-MS). The results revealed significant improvements in different ions, sugars, OAs, and other metabolic profiles of maize. Nanoparticles boosted sugar metabolism, as evidenced by increased glucose, fructose, and sucrose concentrations, and improved nutrient uptake, indicated by higher nitrate, sulfate, and phosphate levels. Particularly, nano-fertilizers effectively limited Na accumulation under saline conditions and enhanced maize's salt stress tolerance. Furthermore, nano-treatments optimized the potassium-to-sodium ratio, a critical factor in maintaining ionic homeostasis under stress conditions. With the growing threat of salinity stress on global food security, these findings highlight the urgent need for further development and implementation of effective solutions like the application of nano-fertilizers in mitigating the negative impact of salinity on plant growth and productivity. However, this controlled environment limits the direct applicability to field conditions and needs future research, particularly long-term field trials, to confirm such results of nano-fertilizers against salinity stress and their economic viability towards sustainable agriculture.

2.
J Environ Manage ; 359: 120969, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678900

RESUMO

Nitrification inhibitors (NIs) and drip irrigation are recommended to mitigate trace gas emissions from agricultural soils. However, studies comparing the effect of different NIs on the release of trace gases from soils with contrasting textures under subsurface (SBD) and surface (SD) drip irrigation are lacking. Therefore, this study aimed to assess the effectiveness of three NIs in mitigating nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) emissions from two soils with different textures under SBD, with pipe buried in 10 cm depth, and SD. Two greenhouse experiments were carried out with silt loam and loamy sand soil textures cultivated with wheat under SBD and SD to assess the effectiveness of the NIs Dicyandiamide (DCD), 3,4-Dimethylpyrazole phosphate (DMPP), and 3-Methylpyrazol combined with Triazol (MP + TZ). Ammonium sulfate was applied at a rate of 0.18 g N kg soil-1. The measured variables were daily and cumulative N2O-N, CO2-C, and CH4-C emissions, as well as soil NH4+-N and NO3--N concentrations. The NIs and SBD had additive effects on reducing N2O-N emissions in the silt loam, but not in the loamy sand soil texture. Under SBD, total N2O-N emissions were 44% and 52% lower than under SD in the silt loam and loamy sand soil textures, respectively. Moreover, DMPP kept the highest NH4+-N concentrations and promoted the lowest N2O-N release. CO2-C and CH4-C total emissions were not affected by the treatments. Our findings supported the hypothesis that SBD decreases N2O-N emissions relative to SD. Among the investigated NIs, DMPP has the highest effectiveness in retarding nitrification and mitigating N2O-N release under the studied treatments. Finally, in coarse-textured soils, the use of NIs could be sufficient to significantly abate N2O-N emissions.


Assuntos
Dióxido de Carbono , Nitrificação , Óxido Nitroso , Solo , Solo/química , Óxido Nitroso/análise , Dióxido de Carbono/análise , Metano , Irrigação Agrícola , Pirazóis/química
3.
Physiol Plant ; 175(6): e14093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148186

RESUMO

Soil phosphorus (P) application is the most common fertilisation technique but may involve constraints due to chemical fixation and microbial immobilisation. Furthermore, excessive P fertilisation leads to P runoff into water bodies, threatening ecosystems, so targeted foliar P fertilisation is an interesting alternative. This study aimed to determine the importance of leaf surface characteristics for foliar P uptake in P-deficient maize (Zea mays L.). The leaf surface of four maize cultivars was characterised by electron microscopy, Fourier transform infrared spectroscopy and contact angle measurements. Uptake of foliar-applied P by maize cultivars was estimated, measuring also leaf photosynthetic rates after foliar P spraying. Plants of cultivar P7948 were found to be wettable from the 4th leaf in acropetal direction, whereas other cultivars were unwettable until the 6th leaf had developed. Minor variations in stomatal number and cuticle composition were recorded, but no differences in foliar P absorption were observed between cultivars. Nevertheless, cultivars showed variation in the improvement of photosynthetic capacity following foliar P application. Phosphorus deficiency resulted in ultrastructural disorganisation of mesophyll cells and chloroplasts, which impaired photosynthetic performance, yet there was no effect on stomatal frequency and leaf wettability. This study provides new insights into the influence of P deficiency and cultivar on leaf surface characteristics, foliar P uptake and its effect on physiological processes. Understanding the relationships between leaf characteristics and P uptake allows a more targeted evaluation of foliar P fertilisation as an application technique and contributes to the understanding of foliar uptake mechanisms.


Assuntos
Ecossistema , Zea mays , Zea mays/fisiologia , Fósforo/farmacologia , Folhas de Planta/fisiologia , Fotossíntese/fisiologia
4.
Plant Physiol Biochem ; 205: 108170, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38008008

RESUMO

Foliar fertilisation is an alternative form of nutrient application, which is of particular interest for phosphorus (P), where the efficiency of soil fertilisation is low. However, the uptake of foliar-applied nutrients is insufficiently characterised. The aim of this study was to investigate the individual and combined significance of wettability, foliar fertiliser properties and surfactant on foliar P uptake in P-deficient maize (Zea mays L.). Sorption and desorption properties of two P salts used as foliar fertilisers (KH2PO4, K2HPO4) were determined with dynamic vapor sorption isotherms. Leaf surfaces and foliar spray depositions of two differently wettable maize cultivars were investigated by scanning electron microscopy and contact angle measurement. Phosphorus uptake was then linked to leaf and fertiliser solution properties and its effect on cell ultrastructure was characterised by transmission electron microscopy. Wettability was the key factor for P absorption, as all foliar fertilisers were taken up reaching a tissue-P level of adequately nourished plants. For unwettable leaves, only solutions with surfactant, especially the combination of surfactant and hygroscopic P salt (K2HPO4) were taken up. This study provides novel insights into the significance of leaf surface and fertiliser properties, which can thus contribute to an improvement of P fertilisation strategies.


Assuntos
Fertilizantes , Zea mays , Fertilizantes/análise , Molhabilidade , Folhas de Planta/metabolismo , Fósforo/metabolismo , Tensoativos
5.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628947

RESUMO

Aside from its importance in human and animal health, low levels of foliar-applied selenate (SeO4) can be advantageous in the presence of sulfur (S), contributing to improved growth, nutrient uptake, and crop quality. A hydroponic experiment in a growth chamber explored the interactive influence of Se and S on micronutrients and several quality indices, such as soluble sugars, organic acids, and total protein concentrations in spinach (Spinacia oleracea L.). Three levels of S (deprivation, adequate, and excessive) with varying quantities of Se (deficient, moderate, and higher) were examined in combination. Under S starvation and along with S nourishment in plant parts, Se treatments were found to cause noticeable variations in plant biomass and the concentrations of the examined elements and other quality parameters. Both Se levels promoted S accumulation in S-treated plants. Although the Se treatment had the opposite effect in shoots, it had a favorable impact on minerals (apart from Mn) in roots grown under S-limiting conditions. The S and Se relationship highlighted beneficial and/or synergistic effects for Mn and Fe in edible spinach portions. Reducing sugars were synergistically boosted by adequate S and moderate Se levels in roots, while in shoots, they were accumulated under moderate-or-higher Se and excessive S. Furthermore, the concentration of the quantified organic acids under S-deficient conditions was aided by various Se levels. In roots, moderate Se under high S application enhanced both malic acid and citric acid, while in the edible parts, higher Se under both adequate and elevated S levels were found to be advantageous in malic acid accumulation. Moreover, by elevating S levels in plant tissues, total protein concentration increased, whereas both moderate and high Se levels (Se1 and Se2) did not alter total protein accumulation in high S-applied roots and shoots. Our findings show that the high S and medium Se dose together benefit nutrient uptake; additionally, their combinations support soluble sugars and organic acids accumulation, contributing ultimately to the nutritional quality of spinach plants. Moreover, consuming 100 g of fresh red spinach shoot enriched with different Se and S levels can contribute to humans' daily micronutrients intake.


Assuntos
Selênio , Oligoelementos , Animais , Humanos , Micronutrientes , Spinacia oleracea , Enxofre
6.
Plants (Basel) ; 12(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299131

RESUMO

Foliar fertilisation is an application technique that is increasingly being used in agriculture and offers the possibility of providing nutrients directly to the site of highest demand. Especially for phosphorus (P), foliar application is an interesting alternative to soil fertilisation, but foliar uptake mechanisms are poorly understood. To gain a better understanding of the importance of leaf surface features for foliar P uptake, we conducted a study with tomato (Solanum lycopersicum) and pepper (Capsicum annuum) plants, which have different leaf surface traits. For this purpose, drops of 200 mM KH2PO4 without surfactant were applied onto the adaxial or abaxial leaf side or to the leaf veins and the rate of foliar P absorption was evaluated after one day. Additionally, leaf surfaces were characterised in detail by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), estimating also leaf surface wettability and free energy, among other parameters. While the leaves of pepper hardly contained any trichomes, the abaxial side and the leaf veins of tomato leaves were densely covered with trichomes. The cuticle of tomato leaves was thin (approximately 50 nm), while that of pepper was thick (approximately 150-200 nm) and impregnated with lignin. Due to the fact that trichomes were most abundant in the leaf veins of tomato, dry foliar fertiliser drop residues were observed to be anchored there, and the highest P uptake occurred via tomato leaf veins, resulting in 62% increased P concentration. However, in pepper, the highest rate of P absorption was recorded after abaxial-side P treatment (+66% P). Our results provide evidence that different leaf parts contribute unequally to the absorption of foliar-applied agrochemicals, which could potentially be useful for optimising foliar spray treatments in different crops.

7.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203560

RESUMO

Cadmium (Cd), being a highly toxic heavy metal, significantly impacts plant growth and development by altering nutrient uptake and causing oxidative and structural damage, resulting in reduced yield. To combat Cd toxicity and accumulation in wheat, it was hypothesized that co-application of Selenium (Se) and Silicon (Si) can reduce the adverse effect of Cd and regulate Cd resistance while improving Se fortification in wheat. Therefore, this study evaluated the comparative effect of Se and Si on the growth and antioxidant defense systems of wheat plants grown in a hydroponic setup. Briefly, the plants were acclimatized to the hydroponic solution for 1 week and then exposed to 10 µmol Cd. Afterwards, the treatments, including 0.2 mmol Si and 1.5 µmol Se, were applied as a root and foliar application, respectively. Plants supplemented with both Se and Si showed improved biomass and other physiological growth attributes, and this response was associated with improved activity/contents of antioxidants, including glutathione (GSH) content, glutathione reductase (GR), ascorbate peroxidase (APX), and catalase (CAT), with related lowering of hydrogen peroxide, malondialdehyde content, and structural damages. Moreover, by Se + Si supplementation, a decrease in total S levels in plant tissues was observed, whereas an increase in total protein concentration and GSH indicated a different and novel mechanism of Cd tolerance and S homeostasis in the plant. It was observed that Si was more involved in significantly reducing Cd translocation by stabilizing Cd in the root and reducing its content in the soluble fraction in both the root and shoot. Whereas Se was found to play the main role in reducing the oxidative damage caused by Cd, and the effect was more profound in the shoot. In addition, this study also observed a positive correlation between Si and Se for relative uptake, which had not been reported earlier. Our findings show that the Se and Si doses together benefit growth regulation and nutrient uptake; additionally, their combinations support the Cd resistance mechanism in wheat through upregulation of the antioxidant system and control of Cd translocation and subcellular distribution, ultimately contributing to the nutritional quality of wheat produced. Thus, it is concluded that the co-application of Se and Si has improved the nutritional quality while reducing the Cd risk in wheat and therefore needs to be employed as a potential strategy to ensure food safety in a Cd-contaminated environment.


Assuntos
Selênio , Selênio/farmacologia , Antioxidantes , Cádmio/toxicidade , Triticum , Silício/farmacologia , Glutationa
8.
Plants (Basel) ; 11(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36365439

RESUMO

The essential plant nutrient phosphorus (P) is key for numerous structures and processes in crops and its deficiency can severely restrict yield and quality. As soil P availability for plant uptake is often limited, foliar P application can be an alternative means of supplying P to the plants during the growth period. This study was aimed at investigating the effect of foliar P application on photosynthetic parameters, P nutritional status, and growth of P deficient maize over time. Plants of Zea mays L. cv. Keops were grown with deficient and sufficient amounts of P in hydroponics. Foliar P treatments were applied to P deficient plants and several physiological parameters were monitored for 21 days. The variables measured were leaf gas exchange parameters, SPAD values, foliar P absorption, re-translocation rates, and plant biomass production. Foliar P application significantly increased CO2-assimilation and SPAD values and additionally enhanced biomass production in all plant components. Elemental analysis revealed increased tissue P concentrations following foliar P application compared to P deficient plants. While increased growth of P-deficient plants was steadily promoted by foliar P spraying for the entire experimental period, the positive effect on CO2 assimilation and P concentration was transient and vanished some days after the foliar treatment. P deficiency markedly impaired the efficiency of physiological processes of maize plants. As a conclusion, foliar P fertilisation improved physiological and agronomical plant parameters over time, but failed to restore plant functionality of P deficient maize plants during a prolonged experimental period.

9.
Plant Physiol Biochem ; 166: 677-688, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34214778

RESUMO

One crucial aspect for successful foliar application is the uptake of the nutrient into the symplast for metabolization by the plant. Our aim was to determine the subcellular distribution of foliar-applied P in leaves, the translocation of this element within the whole plant, and its impact on the ion status of P-deficient maize plants within the first 48 h of treatment. Maize plants with P deficiency were sprayed with 200 mM KH2PO4. After 6, 24, and 48 h, the 5th leaf of each plant was harvested for the isolation of apoplastic washing fluid, cell sap, and vascular bundle sap and for the examination of transporter gene expression. The remaining tissues were divided into 4th leaf, older and younger shoots, and root for total P determination. No accumulation of foliar-applied P was measured in the apoplast. P was mostly taken up into the cytosol within the first 6 h and was associated with increased mRNA levels of PHT1 transporters. A strong tendency towards rapid translocation into the younger shoot and an increase in NO3- uptake or a decrease in organic acid translocation were observed. The apoplast seems to exert no effect on the uptake of foliar-applied P into the epidermal and mesophyll cells of intact leaves. Instead, the plant responds with the rapid translocation of P and changes in ion status to generate further growth. The effect of the absorbed foliar-applied P is assumed to be a rapid process with no transient storage in the leaf apoplast.


Assuntos
Fósforo , Zea mays , Transporte Biológico , Folhas de Planta , Raízes de Plantas
10.
Front Plant Sci ; 12: 638671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33719316

RESUMO

Many people across the world suffer from iodine (I) deficiency and related diseases. The I content in plant-based foods is particularly low, but can be enhanced by agronomic biofortification. Therefore, in this study two field experiments were conducted under orchard conditions to assess the potential of I biofortification of apples and pears by foliar fertilization. Fruit trees were sprayed at various times during the growing season with solutions containing I in different concentrations and forms. In addition, tests were carried out to establish whether the effect of I sprays can be improved by co-application of potassium nitrate (KNO3) and sodium selenate (Na2SeO4). Iodine accumulation in apple and pear fruits was dose-dependent, with a stronger response to potassium iodide (KI) than potassium iodate (KIO3). In freshly harvested apple and pear fruits, 51% and 75% of the biofortified iodine was localized in the fruit peel, respectively. The remaining I was translocated into the fruit flesh, with a maximum of 3% reaching the core. Washing apples and pears with running deionized water reduced their I content by 14%. To achieve the targeted accumulation level of 50-100 µg I per 100 g fresh mass in washed and unpeeled fruits, foliar fertilization of 1.5 kg I per hectare and meter canopy height was required when KIO3 was applied. The addition of KNO3 and Na2SeO4 to I-containing spray solutions did not affect the I content in fruits. However, the application of KNO3 increased the total soluble solids content of the fruits by up to 1.0 °Brix compared to the control, and Na2SeO4 in the spray solution increased the fruit selenium (Se) content. Iodine sprays caused leaf necrosis, but without affecting the development and marketing quality of the fruits. Even after three months of cold storage, no adverse effects of I fertilization on general fruit characteristics were observed, however, I content of apples decreased by 20%.

11.
Front Plant Sci ; 10: 642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156690

RESUMO

Baking quality of wheat flour is determined by grain protein concentration (GPC) and its composition and is highly influenced by environmental factors such as nitrogen (N) fertilization management. This study investigated the effect of split N application on grain protein composition and baking quality of two winter wheat cultivars, Tobak and JB Asano, belonging to different baking quality classes. Bread loaf volumes in both cultivars were enhanced by split N application. In contrast, GPC was only significantly increased in JB Asano. Comparative 2-DE revealed that the relative volumes of 21 and 28 unique protein spots were significantly changed by split N application in Tobak and JB Asano, respectively. Specifically, the alterations in relative abundance of certain proteins, i.e., globulins, LMW-GS, α-, and γ-gliadins as well as α-amylase/trypsin inhibitors were more sensitive to split N application. Furthermore, certain proteins identified as globulins and alpha-amylase inhibitors were changed in both wheat cultivars under split N application. These results implied that the functions of these unique proteins might have played important roles in affecting baking quality of wheat flour, especially for cultivars (i.e., Tobak in the present study) the baking quality of which is less dependent on GPC.

12.
J Hazard Mater ; 364: 581-590, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30388642

RESUMO

Silicon (Si) can alleviate cadmium (Cd) toxicity in many plants, but mechanisms underlying this beneficial effect are still lacking. In this study, the roles of Si in time-dependent apoplastic and symplastic Cd absorption by roots of wheat plants were investigated. Results showed that, during short-term Cd exposure, the symplastic pathway of Cd in roots was not significantly affected by Si. Cell wall properties and cell wall-bound Cd regarding the apoplastic pathway were unaffected by Si either. Nevertheless, Cd concentrations in the apoplastic fluid of roots were decreased by Si. The reason could be that Si delayed endodermal suberization of roots resulting in promoted apoplastic Cd translocation to shoots, thus decreasing Cd in the apoplastic fluid of roots after short-term Cd stress. By contrast, after long-term Cd stress, cell wall properties and the expression of genes related to Cd influx and transport were unaffected. Intriguingly, Si up-regulated the expression of the Cd efflux-related gene TaTM20 and repressed apoplastic Cd translocation to shoots, which might contribute to decrease of Cd after long-term Cd exposure. Taken together, these results indicate that Si-dependent decrease in root Cd concentrations during short-term Cd exposure helps plants to mitigate Cd toxicity in the long-term.


Assuntos
Cádmio/química , Lipídeos/biossíntese , Raízes de Plantas/efeitos dos fármacos , Silício/farmacologia , Triticum/efeitos dos fármacos , Adsorção , Biomassa , Cádmio/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Endoderma/efeitos dos fármacos , Endoderma/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Triticum/química , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
13.
Environ Sci Pollut Res Int ; 25(33): 33794-33805, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30276702

RESUMO

Sulfur deficiency and cadmium (Cd) pollution are two ubiquitous constraints affecting plant growth in agricultural soils. However, facing the situation of sulfur deficiency, whether surplus sulfate supply can affect Cd toxicity in plants is still unclear. Therefore, in the present study, experiments with deficient, sufficient, and excess sulfate levels under Cd stress were conducted in faba bean plants hydroponically. We found that sulfate supply significantly increased biomass of Cd-stressed plants when compared with deficient sulfate treatment. Intriguingly, sulfate application also increased Cd concentrations in leaves. Based on increased Cd concentrations without retarding plant growth, we conclude that sulfate supply enhances Cd tolerance in faba bean plants. Sulfate application increased CdSO40 proportion in the growth medium which is partially related to the increase of Cd in plants because the diffusion of CdSO40 is faster than Cd2+ in plants. Further study on Cd localization showed that this heavy metal was prone to accumulate in the epidermis of leaves as affected by sulfate which might contribute to enhancement of Cd tolerance. Oxidative stress induced by Cd toxicity was alleviated by surplus sulfate supply compared with deficient sulfate. Although capacities of total antioxidants were increased by sulfate in Cd-stressed plants, phenolic compounds as one kind of important antioxidants were unchanged, suggesting that sulfate has no effect on phenolic compounds for scavenging ROS under Cd stress. Taken together, sulfate accelerates Cd accumulation in the epidermis of leaves in faba bean giving rise to higher Cd tolerance.


Assuntos
Cádmio/farmacocinética , Cádmio/toxicidade , Sulfatos/farmacologia , Vicia faba/efeitos dos fármacos , Antioxidantes/metabolismo , Biodegradação Ambiental , Hidroponia , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Poluentes do Solo/toxicidade , Enxofre/metabolismo , Vicia faba/crescimento & desenvolvimento , Vicia faba/metabolismo
14.
Ecotoxicol Environ Saf ; 156: 375-382, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29574320

RESUMO

Cadmium (Cd) is a toxic element, and is prevalent all over the world because of industrialization, mining, sewage sludge, or pesticide supply. Sulfur deficiency is also a frequent problem faced in agriculture. To date, information relating to effects of sulfate on Cd toxicity is still limited. To elucidate how sulfate affects Cd accumulation in faba bean, subcellular accumulation of Cd in leaves consisting of apoplastic washing fluid, symplastic fluid and the cell wall under deficient, sufficient and excess sulfate treatments were investigated in the present study. By using stable isotope of Cd (106Cd), we also traced Cd accumulation in young leaves at flowering stage from early and newly uptake of Cd in the same plants as affected by sulfate. We found that excess sulfate supply significantly increased newly uptake of Cd without affecting early uptake of Cd when compared with sufficient sulfate treatment, which resulted in enhanced total Cd in leaves by excess sulfate. Since newly uptake of Cd in leaves was from root uptake directly, we conclude that excess sulfate supply enhanced Cd originated from root uptake directly rather than re-translocation from old leaves, which is related to increased Cd accumulation in young leaves of faba bean. Subcellular analysis showed that the enhanced Cd by excess sulfate addition was a consequence of enhanced Cd in cell walls, while Cd accumulation in the apoplastic washing fluid and symplastic fluid were unchanged. The increased Cd by excess sulfate supply might be related to increased proportion of Cd speciation CdSO40 in the growth medium because of faster diffusion of CdSO40 than Cd2+. To test whether macronutrients, micronutrients, sulfate and non-protein thiol involved in cell wall-Cd accumulation as affected by sulfate, correlations of subcellular Cd with subcellular macronutrients, micronutrients, sulfate, and non-protein thiol were analyzed. We found that cell wall-Cd was negatively correlated with K and Ca concentrations, whereas cell wall-Cd was positively correlated with Cu and symplastic non-protein thiol concentrations. However, when compared with sufficient sulfate, excess sulfate decreased K concentration and increased symplastic non-protein thiol concentration without changing Ca and Cu concentrations. Based on those results, reduction of K concentration and enhancement of symplastic non-protein thiol concentration by sulfate supply might be a reason for increase of cell wall-Cd concentration. Taken together, increased Cd in cell walls of leaves by sulfate supply contributes to enhance Cd accumulation.


Assuntos
Cádmio/metabolismo , Folhas de Planta/metabolismo , Sulfatos/metabolismo , Vicia faba/metabolismo , Compostos de Cádmio/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/metabolismo
15.
Funct Plant Biol ; 44(5): 515-524, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32480584

RESUMO

Salinity disturbs both apoplastic and cytosolic Ca2+ and pH ([Ca2+]apo, [Ca2+]cyt, pHapo and pHcyt) homeostasis, and decreases plant growth. Seedlings of Vicia faba L. cv. Fuego were cultivated in hydroponics for 7 days under control, salinity (S), extra Ca (Ca) or salinity with extra Ca (S+Ca) conditions. The [Ca2+]apo, and pHapo in the leaves were then recorded in parallel by a pseudoratiometric method, described here for the first time. Lower [Ca2+]apo and higher pHapo were obtained under salinity, whereas extra Ca supply increased the [Ca2+]apo and acidified the pHapo. Moreover, the ratiometric imaging recorded that [Ca2+]cyt and pHcyt were highest in S+Ca plants and lowest in control plants. After all pretreatments, direct addition of NaC6H11O7 to leaves induced a decrease in [Ca2+]apo in control and S+Ca plants, but not in S and Ca plants, and only slightly affected pHapo. Addition of NaCl increased [Ca2+]cyt in protoplasts from all plants but only transiently in protoplasts from S+Ca plants. Addition of NaCl decreased pHcyt in protoplasts from Ca-pretreated plants. We conclude that Ca supply improves both apoplastic and cytosolic ion homeostasis. In addition, NaC6H11O7 probably causes transport of Ca from the apoplast into the cytosol, thereby leading to a higher resting [Ca2+]cyt.

16.
Front Plant Sci ; 7: 738, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313585

RESUMO

The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.

17.
Planta ; 242(6): 1309-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26202737

RESUMO

MAIN CONCLUSION: The total capacity of the GS-mediated ligation of free ammonium and glutamate to form glutamine in the leaves of maize plants is not impaired upon severe magnesium starvation. Magnesium deficiency does not obligatorily lead to the decreased total protein concentrations in the leaves. Magnesium (Mg) is an integral component of the enzyme glutamine synthetase (GS), having both a structural and a catalytic role. Moreover, Mg is relevant for the post-translational regulation of the GS. Glutamine synthetase is one of the key enzymes in nitrogen assimilation, ligating-free ammonium (NH4 (+)) to glutamate to form glutamine and it is therefore crucial for plant growth and productivity. This study was conducted in order to test whether a severe Mg-deficiency impairs the total capacity of the GS-catalyzed synthesis of glutamine in maize leaves. Maize was grown hydroponically and the GS activity was analyzed dependent on different leaf developmental stages. Glutamine synthetase activity in vitro assays in combination with immune-dot blot analysis revealed that both the total activity and the abundance of glutamine synthetase was not impaired in the leaves of maize plants upon 54 days of severe Mg starvation. Additionally, it was shown that Mg deficiency does not obligatorily lead to decreased total protein concentrations in the leaves, as assayed by Bradford protein quantification. Moreover, Mg resupply to the roots or the leaves of Mg-deficient plants reversed the Mg-deficiency-induced accumulation of free amino acids in older leaves, which indicates impaired phloem loading. The results of our study reveal that the total GS-mediated primary or secondary assimilation of free NH4 (+) is not a limiting enzymatic reaction under Mg deficiency and thus cannot be accountable for the observed restriction of plant growth and productivity in Mg-deficient maize.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Magnésio/metabolismo , Folhas de Planta/enzimologia , Zea mays/enzimologia , Regulação da Expressão Gênica de Plantas
18.
J Biol Chem ; 290(18): 11235-45, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25750129

RESUMO

The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays ß-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Proteínas de Plantas/química , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estresse Fisiológico/efeitos dos fármacos
19.
Plant Physiol Biochem ; 82: 244-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25010036

RESUMO

Salt stress in plants impacts apoplastic ion activities and cytosolic ionic homeostasis. The ameliorating effects exerted by calcium or potassium on compartmentation of ions in leaves under salinity are not fully understood. To clarify how calcium or potassium supply could ameliorate ion homeostasis and ATPase activities under salinity, 5 mM CaSO4 or 10 mM K2SO4 were added with, or without, 100 mM NaCl for 7 d and 21 d to Vicia faba grown in hydroponics. The apoplastic pH was detected with Oregon Green dextran dye in intact second-uppermost leaves by microscopy-based ratio imaging. The cytosolic Ca(2+), Na(+), K(+) activities and pH were detected in protoplasts loaded with the acetoxy methyl-esters of Fura-2, SBFI, PBFI and BCECF, respectively, using epi-fluorescence microscopy. Furthermore, total Ca(2+), Na(+), K(+) concentrations and growth parameters were investigated. The ATPase hydrolyzing activity increased with time, but decreased after long salinity treatment. The activity largely increased in calcium-treated plants, but was depressed in potassium-treated plants after 7 d. The calcium supply increased Vmax, and the ATPase activity increased with salinity in a non-competitive way for 7 d and 21 d. The potassium supply instead decreased activity competitively with Na(+), after 21 d of salinity, with different effects on Km and Vmax. The confirmed higher ATPase activity was related with apoplast acidification, cytosol alkalinization and low cytosolic [Na(+)], and thus, might be an explanation why extra calcium improved shoot and leaf growth.


Assuntos
Cálcio/metabolismo , Membrana Celular/enzimologia , Íons/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Potássio/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Vicia faba/enzimologia , Homeostase , Salinidade
20.
Plant Sci ; 223: 109-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24767120

RESUMO

The pH is a basic chemical requirement in cellular and apoplastic compartments that influences various physiological processes in plants. Apoplastic pH shifts can modulate the apoplastic and symplastic distribution of plant hormones or influence proton motive force-driven uptake processes over the plasma-membrane. Changing environments are known to effect on the apoplastic H(+)-concentration in leaves and roots. The onset of NaCl-stress at the roots for instance primes a chloride-specific systemic alkalinization of the leaf apoplast. By means of microscopy- and macroscopy-based in planta ratio-imaging we surprisingly found that large adaxial-abaxial pH gradients were established throughout the leaf apoplast during the formation of the NaCl-induced alkalinization. Moreover, the root system is necessary to ensure the transient nature of the leaf apoplastic alkalinization.


Assuntos
Microscopia/métodos , Folhas de Planta/metabolismo , Raízes de Plantas/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Vicia faba/fisiologia , Cloretos/metabolismo , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Íons , Raízes de Plantas/efeitos dos fármacos , Vicia faba/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA