Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 48: 13-24, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29753069

RESUMO

Microbial processes can produce a wide range of compounds; however, producing complex and long chain hydrocarbons remains a challenge. Aldol condensation offers a direct route to synthesize these challenging chemistries and can be catalyzed by microbes using aldolases. Deoxyribose-5-phosphate aldolase (DERA) condenses aldehydes and/or ketones to ß-hydroxyaldehydes, which can be further converted to value-added chemicals such as a precursor to cholesterol-lowering drugs. Here, we implement a short, aldolase-based pathway in Escherichia coli to produce (R)-1,3-BDO from glucose, an essential component of pharmaceutical products and cosmetics. First, we expressed a three step heterologous pathway from pyruvate to produce 0.3 g/L of (R)-1,3-BDO with a yield of 11.2 mg/g of glucose in wild-type E. coli K12 MG1655. We used a systems metabolic engineering approach to improve (R)-1,3-BDO titer and yield by: 1) identifying and reducing major by-products: ethanol, acetoin, and 2,3-butanediol; 2) increasing pathway flux through DERA to reduce accumulation of toxic acetaldehyde. We then implemented a two-stage fermentation process to improve (R)-1,3-BDO titer by 8-fold to 2.4 g/L and yield by 5-fold to 56 mg/g of glucose (11% of maximum theoretical yield) in strain BD24, by controlling pH to 7 and higher dissolved oxygen level. Furthermore, this study highlights the potential of the aldolase chemistry to synthesize diverse products directly from renewable resources in microbes.


Assuntos
Butileno Glicóis/metabolismo , Escherichia coli K12 , Proteínas de Escherichia coli , Frutose-Bifosfato Aldolase , Engenharia Metabólica , Escherichia coli K12/enzimologia , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo
2.
Anal Chem ; 87(19): 9679-86, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26366644

RESUMO

Dynamic isotope labeling data provides crucial information about the operation of metabolic pathways and are commonly generated via liquid chromatography-mass spectrometry (LC-MS). Metabolome-wide analysis is challenging as it requires grouping of metabolite features over different samples. We developed DynaMet for fully automated investigations of isotope labeling experiments from LC-high-resolution MS raw data. DynaMet enables untargeted extraction of metabolite labeling profiles and provides integrated tools for expressive data visualization. To validate DynaMet we first used time course labeling data of the model strain Bacillus methanolicus from (13)C methanol resulting in complex spectra in multicarbon compounds. Analysis of two biological replicates revealed high robustness and reproducibility of the pipeline. In total, DynaMet extracted 386 features showing dynamic labeling within 10 min. Of these features, 357 could be fitted by implemented kinetic models. Feature identification against KEGG database resulted in 215 matches covering multiple pathways of core metabolism and major biosynthetic routes. Moreover, we performed time course labeling experiment with Escherichia coli on uniformly labeled (13)C glucose resulting in a comparable number of detected features with labeling profiles of high quality. The distinct labeling patterns of common central metabolites generated from both model bacteria can readily be explained by one versus multicarbon compound metabolism. DynaMet is freely available as an extension package for Python based eMZed2, an open source framework built for rapid development of LC-MS data analysis workflows.


Assuntos
Automação , Glucose/análise , Marcação por Isótopo , Metanol/análise , Bacillus/metabolismo , Isótopos de Carbono , Cromatografia Líquida , Bases de Dados Factuais , Escherichia coli/metabolismo , Glucose/metabolismo , Espectrometria de Massas , Metabolômica , Metanol/metabolismo , Reprodutibilidade dos Testes
3.
Mol Microbiol ; 98(6): 1089-100, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26303953

RESUMO

Bacillus methanolicus MGA3 is a model facultative methylotroph of interest for fundamental research and biotechnological applications. Previous research uncovered a number of pathways potentially involved in one-carbon substrate utilization. Here, we applied dynamic (13) C labeling to elucidate which of these pathways operate during growth on methanol and to uncover potentially new ones. B. methanolicus MGA3 uses the assimilatory and dissimilatory ribulose monophosphate (RuMP) cycles for conversion of the central but toxic intermediate formaldehyde. Additionally, the operation of two cofactor-dependent formaldehyde oxidation pathways with distinct roles was revealed. One is dependent on tri- and tetraglutamylated tetrahydrofolate (THF) and is involved in formaldehyde oxidation during growth on methanol. A second pathway was discovered that is dependent on bacillithiol, a thiol cofactor present also in other Bacilli where it is known to function in redox-homeostasis. We show that bacillithiol-dependent formaldehyde oxidation is activated upon an upshift in formaldehyde induced by a substrate switch from mannitol to methanol. The genes and the corresponding enzymes involved in the biosynthesis of bacillithiol were identified by heterologous production of bacillithiol in Escherichia coli. The presented results indicate metabolic plasticity of the methylotroph allowing acclimation to fluctuating intracellular formaldehyde concentrations.


Assuntos
Bacillus/genética , Bacillus/metabolismo , Cisteína/análogos & derivados , Formaldeído/metabolismo , Glucosamina/análogos & derivados , Redes e Vias Metabólicas , Bacillus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Isótopos de Carbono , Cisteína/biossíntese , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Formaldeído/efeitos adversos , Glucosamina/biossíntese , Glucosamina/genética , Glucosamina/metabolismo , Manitol/metabolismo , Redes e Vias Metabólicas/genética , Metanol/metabolismo , Pentoses/metabolismo , Estresse Fisiológico
4.
Appl Microbiol Biotechnol ; 99(8): 3407-19, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25661812

RESUMO

Bio-based production of dicarboxylic acids is an emerging research field with remarkable progress during the last decades. The recently established synthesis of the ethylmalonyl-CoA pathway (EMCP)-derived dicarboxylic acids, mesaconic acid and (2S)-methylsuccinic acid, from the alternative carbon source methanol (Sonntag et al., Appl Microbiol Biotechnol 98:4533-4544, 2014) gave a proof of concept for the sustainable production of hitherto biotechnologically inaccessible monomers. In this study, substantial optimizations of the process by different approaches are presented. Abolishment of mesaconic and (2S)-methylsuccinic acid reuptake from culture supernatant and a productivity increase were achieved by 30-fold decreased sodium ion availability in culture medium. Undesired flux from EMCP into polyhydroxybutyrate (PHB) cycle was hindered by the knockout of polyhydroxyalkanoate synthase phaC which was concomitant with 5-fold increased product concentrations. However, frequently occurring suppressors of strain ΔphaC lost their beneficial properties probably due to redirected channeling of acetyl-CoA. Pool sizes of the product precursors were increased by exploiting the presence of two cobalt-dependent mutases in the EMCP: Fine-tuned growth-limiting cobalt concentrations led to 16-fold accumulation of mesaconyl- and (2S)-methylsuccinyl-CoA which in turn resulted in 6-fold increased concentrations of mesaconic and (2S)-methylsuccinic acids, with a combined titer of 0.65 g/l, representing a yield of 0.17 g/g methanol. This work represents an important step toward an industrially relevant production of ethylmalonyl-CoA pathway-derived dicarboxylic acids and the generation of a stable PHB synthesis negative Methylobacterium extorquens strain.


Assuntos
Acil Coenzima A/metabolismo , Cobalto/deficiência , Cobalto/metabolismo , Ácidos Dicarboxílicos/metabolismo , Hidroxibutiratos/metabolismo , Methylobacterium extorquens/metabolismo , Poliésteres/metabolismo , Biotecnologia/métodos , Meios de Cultura/química , Técnicas de Inativação de Genes , Engenharia Metabólica/métodos
5.
Metab Eng ; 28: 190-201, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25596507

RESUMO

Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy genes" into Escherichia coli based on in silico considerations and flux balance analysis to enable methanol dissimilation and assimilation. We determined that the most promising approach allowing the utilization of methanol was the implementation of NAD-dependent methanol dehydrogenase and the establishment of the ribulose monophosphate cycle by expressing the genes for hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi). To test for the best-performing enzymes in the heterologous host, a number of enzyme candidates from different donor organisms were selected and systematically analyzed for their in vitro and in vivo activities in E. coli. Among these, Mdh2, Hps and Phi originating from Bacillus methanolicus were found to be the most effective. Labeling experiments using (13)C methanol with E. coli producing these enzymes showed up to 40% incorporation of methanol into central metabolites. The presence of the endogenous glutathione-dependent formaldehyde oxidation pathway of E. coli did not adversely affect the methanol conversion rate. Taken together, the results of this study represent a major advancement towards establishing synthetic methylotrophs by gene transfer.


Assuntos
Oxirredutases do Álcool , Bacillus , Proteínas de Bactérias , Engenharia Metabólica , Metanol/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Bacillus/enzimologia , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
6.
Appl Microbiol Biotechnol ; 99(2): 535-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25431011

RESUMO

Using methanol as an alternative non-food feedstock for biotechnological production offers several advantages in line with a methanol-based bioeconomy. The Gram-positive, facultative methylotrophic and thermophilic bacterium Bacillus methanolicus is one of the few described microbial candidates with a potential for the conversion of methanol to value-added products. Its capabilities of producing and secreting the commercially important amino acids L-glutamate and L-lysine to high concentrations at 50 °C have been demonstrated and make B. methanolicus a promising target to develop cell factories for industrial-scale production processes. B. methanolicus uses the ribulose monophosphate cycle for methanol assimilation and represents the first example of plasmid-dependent methylotrophy. Recent genome sequencing of two physiologically different wild-type B. methanolicus strains, MGA3 and PB1, accompanied with transcriptome and proteome analyses has generated fundamental new insight into the metabolism of the species. In addition, multiple key enzymes representing methylotrophic and biosynthetic pathways have been biochemically characterized. All this, together with establishment of improved tools for gene expression, has opened opportunities for systems-level metabolic engineering of B. methanolicus. Here, we summarize the current status of its metabolism and biochemistry, available genetic tools, and its potential use in respect to overproduction of amino acids.


Assuntos
Bacillus/metabolismo , Genoma Bacteriano , Metanol/metabolismo , Bacillus/genética , DNA Bacteriano/genética , Ácido Glutâmico/biossíntese , Temperatura Alta , Lisina/biossíntese , Plasmídeos/genética , Regiões Promotoras Genéticas , Proteoma/metabolismo , Proteômica , Análise de Sequência de DNA
7.
FEBS Lett ; 588(17): 2993-9, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-24928437

RESUMO

In the Gram-positive methylotroph Bacillus methanolicus, methanol oxidation is catalyzed by an NAD-dependent methanol dehydrogenase (Mdh) that belongs to the type III alcohol dehydrogenase (Adh) family. It was previously shown that the in vitro activity of B. methanolicus Mdh is increased by the endogenous activator protein Act, a Nudix hydrolase. Here we show that this feature is not unique, but more widespread among type III Adhs in combination with Act or other Act-like Nudix hydrolases. In addition, we studied the effect of site directed mutations in the predicted active site of Mdh and two other type III Adhs with regard to activity and activation by Act.


Assuntos
Oxirredutases do Álcool/metabolismo , Bactérias/enzimologia , NAD/metabolismo , Pirofosfatases/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Domínio Catalítico , Ativação Enzimática , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Pirofosfatases/genética , Especificidade da Espécie , Nudix Hidrolases
8.
Proteomics ; 14(6): 725-37, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24452867

RESUMO

Bacillus methanolicus MGA3 is a facultative methylotroph of industrial relevance that is able to grow on methanol as its sole source of carbon and energy. The Gram-positive bacterium possesses a soluble NAD(+) -dependent methanol dehydrogenase and assimilates formaldehyde via the ribulose monophosphate (RuMP) cycle. We used label-free quantitative proteomics to generate reference proteome data for this bacterium and compared the proteome of B. methanolicus MGA3 on two different carbon sources (methanol and mannitol) as well as two different growth temperatures (50°C and 37°C). From a total of approximately 1200 different detected proteins, approximately 1000 of these were used for quantification. While the levels of 213 proteins were significantly different at the two growth temperatures tested, the levels of 109 proteins changed significantly when cells were grown on different carbon sources. The carbon source strongly affected the synthesis of enzymes related to carbon metabolism, and in particular, both dissimilatory and assimilatory RuMP cycle enzyme levels were elevated during growth on methanol compared to mannitol. Our data also indicate that B. methanolicus has a functional tricarboxylic acid cycle, the proteins of which are differentially regulated on mannitol and methanol. Other proteins presumed to be involved in growth on methanol were constitutively expressed under the different growth conditions. All MS data have been deposited in the ProteomeXchange with the identifiers PXD000637 and PXD000638 (http://proteomecentral.proteomexchange.org/dataset/PXD000637, http://proteomecentral.proteomexchange.org/dataset/PXD000638).


Assuntos
Bacillus/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteoma/metabolismo , Bacillus/química , Bacillus/metabolismo , Proteínas de Bactérias/análise , Carbono/metabolismo , Ácido Glutâmico/metabolismo , Espectrometria de Massas , Proteoma/análise , Proteômica , Temperatura
9.
PLoS One ; 8(3): e59188, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527128

RESUMO

Bacillus methanolicus can utilize methanol as the sole carbon source for growth and it encodes an NAD(+)-dependent methanol dehydrogenase (Mdh), catalyzing the oxidation of methanol to formaldehyde. Recently, the genomes of the B. methanolicus strains MGA3 (ATCC53907) and PB1 (NCIMB13113) were sequenced and found to harbor three different putative Mdh encoding genes, each belonging to the type III Fe-NAD(+)-dependent alcohol dehydrogenases. In each strain, two of these genes are encoded on the chromosome and one on a plasmid; only one chromosomal act gene encoding the previously described activator protein ACT was found. The six Mdhs and the ACT proteins were produced recombinantly in Escherichia coli, purified, and characterized. All Mdhs required NAD(+) as cosubstrate, were catalytically stimulated by ACT, exhibited a broad and different substrate specificity range and displayed both dehydrogenase and reductase activities. All Mdhs catalyzed the oxidation of methanol; however the catalytic activity for methanol was considerably lower than for most other alcohols tested, suggesting that these enzymes represent a novel class of alcohol dehydrogenases. The kinetic constants for the Mdhs were comparable when acting as pure enzymes, but together with ACT the differences were more pronounced. Quantitative PCR experiments revealed major differences with respect to transcriptional regulation of the paralogous genes. Taken together our data indicate that the repertoire of methanol oxidizing enzymes in thermotolerant bacilli is larger than expected with complex mechanisms involved in their regulation.


Assuntos
Oxirredutases do Álcool/genética , Bacillus/enzimologia , NAD/genética , Oxirredutases do Álcool/metabolismo , Catálise , Cromossomos Bacterianos/genética , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Vetores Genéticos , Cinética , NAD/metabolismo , Plasmídeos/genética , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Espectrofotometria
10.
Mol Biol Cell ; 22(10): 1638-47, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21460184

RESUMO

ß-barrel proteins are found in the outer membranes of eukaryotic organelles of endosymbiotic origin as well as in the outer membrane of Gram-negative bacteria. Precursors of mitochondrial ß-barrel proteins are synthesized in the cytosol and have to be targeted to the organelle. Currently, the signal that assures their specific targeting to mitochondria is poorly defined. To characterize the structural features needed for specific mitochondrial targeting and to test whether a full ß-barrel structure is required, we expressed in yeast cells the ß-barrel domain of the trimeric autotransporter Yersinia adhesin A (YadA). Trimeric autotransporters are found only in prokaryotes, where they are anchored to the outer membrane by a single 12-stranded ß-barrel structure to which each monomer is contributing four ß-strands. Importantly, we found that YadA is solely localized to the mitochondrial outer membrane, where it exists in a native trimeric conformation. These findings demonstrate that, rather than a linear sequence or a complete ß-barrel structure, four ß-strands are sufficient for the mitochondria to recognize and assemble a ß-barrel protein. Remarkably, the evolutionary origin of mitochondria from bacteria enables them to import and assemble even proteins belonging to a class that is absent in eukaryotes.


Assuntos
Adesinas Bacterianas/biossíntese , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fragmentos de Peptídeos/biossíntese , Proteínas Recombinantes/biossíntese , Adesinas Bacterianas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Multimerização Proteica , Sinais Direcionadores de Proteínas , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA