Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
NPJ Parkinsons Dis ; 10(1): 112, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866793

RESUMO

Digital measures may provide objective, sensitive, real-world measures of disease progression in Parkinson's disease (PD). However, multicenter longitudinal assessments of such measures are few. We recently demonstrated that baseline assessments of gait, tremor, finger tapping, and speech from a commercially available smartwatch, smartphone, and research-grade wearable sensors differed significantly between 82 individuals with early, untreated PD and 50 age-matched controls. Here, we evaluated the longitudinal change in these assessments over 12 months in a multicenter observational study using a generalized additive model, which permitted flexible modeling of at-home data. All measurements were included until participants started medications for PD. Over one year, individuals with early PD experienced significant declines in several measures of gait, an increase in the proportion of day with tremor, modest changes in speech, and few changes in psychomotor function. As measured by the smartwatch, the average (SD) arm swing in-clinic decreased from 25.9 (15.3) degrees at baseline to 19.9 degrees (13.7) at month 12 (P = 0.004). The proportion of awake time an individual with early PD had tremor increased from 19.3% (18.0%) to 25.6% (21.4%; P < 0.001). Activity, as measured by the number of steps taken per day, decreased from 3052 (1306) steps per day to 2331 (2010; P = 0.16), but this analysis was restricted to 10 participants due to the exclusion of those that had started PD medications and lost the data. The change of these digital measures over 12 months was generally larger than the corresponding change in individual items on the Movement Disorder Society-Unified Parkinson's Disease Rating Scale but not greater than the change in the overall scale. Successful implementation of digital measures in future clinical trials will require improvements in study conduct, especially data capture. Nonetheless, gait and tremor measures derived from a commercially available smartwatch and smartphone hold promise for assessing the efficacy of therapeutics in early PD.

3.
Neurotherapeutics ; 20(6): 1682-1691, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823970

RESUMO

Neurological disorders represent some of the most challenging therapeutic areas for successful drug approvals. The escalating global burden of death and disability for such diseases represents a significant worldwide public health challenge, and the rate of failure of new therapies for chronic progressive disorders of the nervous system is higher relative to other non-neurological conditions. However, progress is emerging rapidly in advancing the drug development landscape in both rare and common neurodegenerative diseases. In October 2022, the Critical Path Institute (C-Path) and the US Food and Drug Administration (FDA) organized a Neuroscience Annual Workshop convening representatives from the drug development industry, academia, the patient community, government agencies, and regulatory agencies regarding the future development of tools and therapies for neurological disorders. This workshop focused on five chronic progressive diseases: Alzheimer's disease, Parkinson's disease, Huntington's disease, Duchenne muscular dystrophy, and inherited ataxias. This special conference report reviews the key points discussed during the three-day dynamic workshop, including shared learnings, and recommendations that promise to catalyze future advancement of novel therapies and drug development tools.


Assuntos
Doença de Huntington , Distrofia Muscular de Duchenne , Doenças do Sistema Nervoso , Doença de Parkinson , Humanos , Doenças do Sistema Nervoso/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Desenvolvimento de Medicamentos
4.
Aging Brain ; 3: 100071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408789

RESUMO

There are conflicting results regarding regional age-related changes in serotonin terminal density in human brain. Some imaging studies suggest age-related declines in serotoninergic terminals and perikarya. Other human imaging studies and post-mortem biochemical studies suggest stable brain regional serotoninergic terminal densities across the adult lifespan. In this cross-sectional study, we used [11C]3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile positron emission tomography to quantify brain regional serotonin transporter density in 46 normal subjects, ranging from 25 to 84 years of age. Both voxel-based analyses, using sex as a covariate, and volume-of-interest-based analyses were performed. Both analyses revealed age-related declines in [11C]3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile binding in numerous brain regions, including several neocortical regions, striatum, amygdala, thalamus, dorsal raphe, and other subcortical regions. Similar to some other neurotransmitter systems of subcortical origin, we found evidence of age-related declines in regional serotonin terminal density in both cortical and subcortical regions.

5.
J Parkinsons Dis ; 13(4): 619-632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212071

RESUMO

BACKGROUND: Patient perspectives on meaningful symptoms and impacts in early Parkinson's disease (PD) are lacking and are urgently needed to clarify priority areas for monitoring, management, and new therapies. OBJECTIVE: To examine experiences of people with early-stage PD, systematically describe meaningful symptoms and impacts, and determine which are most bothersome or important. METHODS: Forty adults with early PD who participated in a study evaluating smartwatch and smartphone digital measures (WATCH-PD study) completed online interviews with symptom mapping to hierarchically delineate symptoms and impacts of disease from "Most bothersome" to "Not present," and to identify which of these were viewed as most important and why. Individual symptom maps were coded for types, frequencies, and bothersomeness of symptoms and their impacts, with thematic analysis of narratives to explore perceptions. RESULTS: The three most bothersome and important symptoms were tremor, fine motor difficulties, and slow movements. Symptoms had the greatest impact on sleep, job functioning, exercise, communication, relationships, and self-concept- commonly expressed as a sense of being limited by PD. Thematically, most bothersome symptoms were those that were personally limiting with broadest negative impact on well-being and activities. However, symptoms could be important to patients even when not present or limiting (e.g., speech, cognition). CONCLUSION: Meaningful symptoms of early PD can include symptoms that are present or anticipated future symptoms that are important to the individual. Systematic assessment of meaningful symptoms should aim to assess the extent to which symptoms are personally important, present, bothersome, and limiting.


Assuntos
Doença de Parkinson , Adulto , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Tremor , Cognição , Exercício Físico , Hipocinesia
6.
J Parkinsons Dis ; 13(4): 589-607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212073

RESUMO

BACKGROUND: Adoption of new digital measures for clinical trials and practice has been hindered by lack of actionable qualitative data demonstrating relevance of these metrics to people with Parkinson's disease. OBJECTIVE: This study evaluated of relevance of WATCH-PD digital measures to monitoring meaningful symptoms and impacts of early Parkinson's disease from the patient perspective. METHODS: Participants with early Parkinson's disease (N = 40) completed surveys and 1:1 online-interviews. Interviews combined: 1) symptom mapping to delineate meaningful symptoms/impacts of disease, 2) cognitive interviewing to assess content validity of digital measures, and 3) mapping of digital measures back to personal symptoms to assess relevance from the patient perspective. Content analysis and descriptive techniques were used to analyze data. RESULTS: Participants perceived mapping as deeply engaging, with 39/40 reporting improved ability to communicate important symptoms and relevance of measures. Most measures (9/10) were rated relevant by both cognitive interviewing (70-92.5%) and mapping (80-100%). Two measures related to actively bothersome symptoms for more than 80% of participants (Tremor, Shape rotation). Tasks were generally deemed relevant if they met three participant context criteria: 1) understanding what the task measured, 2) believing it targeted an important symptom of PD (past, present, or future), and 3) believing the task was a good test of that important symptom. Participants did not require that a task relate to active symptoms or "real" life to be relevant. CONCLUSION: Digital measures of tremor and hand dexterity were rated most relevant in early PD. Use of mapping enabled precise quantification of qualitative data for more rigorous evaluation of new measures.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Doença de Parkinson/psicologia , Tremor
7.
Handb Clin Neurol ; 193: 347-360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36803822

RESUMO

There is an exigent need for disease-modifying and symptomatic treatment approaches for Parkinson's disease. A better understanding of Parkinson's disease pathophysiology and new insights in genetics has opened exciting new venues for pharmacological treatment targets. There are, however, many challenges on the path from discovery to drug approval. These challenges revolve around appropriate endpoint selection, the lack of accurate biomarkers, challenges with diagnostic accuracy, and other challenges commonly encountered by drug developers. The regulatory health authorities, however, have provided tools to provide guidance for drug development and to assist with these challenges. The main goal of the Critical Path for Parkinson's Consortium, a nonprofit public-private partnership part of the Critical Path Institute, is to advance these so-called drug development tools for Parkinson's disease trials. The focus of this chapter will be on how the health regulators' tools were successfully leveraged to facilitate drug development in Parkinson's disease and other neurodegenerative diseases.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Desenvolvimento de Medicamentos , Biomarcadores
8.
Clin Transl Sci ; 16(3): 383-397, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36382716

RESUMO

The US Food and Drug Administration (FDA) has publicly recognized the importance of improving drug development efficiency, deeming translational biomarkers a top priority. The use of imaging biomarkers has been associated with increased rates of drug approvals. An appropriate level of validation provides a pragmatic way to choose and implement these biomarkers. Standardizing imaging modality selection, data acquisition protocols, and image analysis (in ways that are agnostic to equipment and algorithms) have been key to imaging biomarker deployment. The best known examples come from studies done via precompetitive collaboration efforts, which enable input from multiple stakeholders and data sharing. Digital health technologies (DHTs) provide an opportunity to measure meaningful aspects of patient health, including patient function, for extended periods of time outside of the hospital walls, with objective, sensor-based measures. We identified the areas where learnings from the imaging biomarker field can accelerate the adoption and widespread use of DHTs to develop novel treatments. As with imaging, technical validation parameters and performance acceptance thresholds need to be established. Approaches amenable to multiple hardware options and data processing algorithms can be enabled by sharing DHT data and by cross-validating algorithms. Data standardization and creation of shared databases will be vital. Pre-competitive consortia (public-private partnerships and professional societies that bring together all stakeholders, including patient organizations, industry, academic experts, and regulators) will advance the regulatory maturity of DHTs in clinical trials.


Assuntos
Disseminação de Informação , Poder Psicológico , Humanos , Preparações Farmacêuticas
9.
Brain Commun ; 4(6): fcac320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569603

RESUMO

Cortical cholinergic deficits contribute to cognitive decline and other deficits in Parkinson's disease. Cross-sectional imaging studies suggest a stereotyped pattern of posterior-to-anterior cortical cholinergic denervation accompanying disease progression in Parkinson's disease. We used serial acetylcholinesterase PET ligand imaging to characterize the trajectory of regional cholinergic synapse deficits in Parkinson's disease, testing the hypothesis of posterior-to-anterior progression of cortical cholinergic deficits. The 16 Parkinson's disease subjects (4 females/12 males; mean age: 64.4 ± 6.7 years; disease duration: 5.5 ± 4.2 years; Hoehn & Yahr stage: 2.3 ± 0.6 at entry) completed serial 11C-methyl-4-piperidinyl propionate acetylcholinesterase PET scans over a 4-8 year period (median 5 years). Three-dimensional stereotactic cortical surface projections and volume-of-interest analyses were performed. Cholinergic synapse integrity was assessed by the magnitude, k 3, of acetylcholinesterase hydrolysis of 11C-methyl-4-piperidinyl propionate. Based on normative data, we generated Z-score maps for both the k 3 and the k 1 parameters, the latter as a proxy for regional cerebral blood flow. Compared with control subjects, baseline scans showed predominantly posterior cortical k 3 deficits in Parkinson's disease subjects. Interval change analyses showed evidence of posterior-to-anterior progression of cholinergic cortical deficits in the posterior cortices. In frontal cortices, an opposite gradient of anterior-to-posterior progression of cholinergic deficits was found. The topography of k 3 changes exhibited regionally specific disconnection from k 1 changes. Interval-change analysis based on k 3/k 1 ratio images (k 3 adjustment for regional cerebral blood flow changes) showed interval reductions (up to 20%) in ventral frontal, anterior cingulate and Brodmann area 6 cortices. In contrast, interval k 3 reductions in the posterior cortices, especially Brodmann areas 17-19, were largely proportional to k 1 changes. Our results partially support the hypothesis of progressive posterior-to-cortical cholinergic denervation in Parkinson's disease. This pattern appears characteristic of posterior cortices. In frontal cortices, an opposite pattern of anterior-to-posterior progression of cholinergic deficits was found. The progressive decline of posterior cortical acetylcholinesterase activity was largely proportional to declining regional cerebral blood flow, suggesting that posterior cortical cholinergic synapse deficits are part of a generalized loss of synapses. The disproportionate decline in regional frontal cortical acetylcholinesterase activity relative to regional cerebral blood flow suggests preferential loss or dysregulation of cholinergic synapses in these regions. Our observations suggest that cortical cholinergic synapse vulnerability in Parkinson's disease is mediated by both diffuse processes affecting cortical synapses and processes specific to subpopulations of cortical cholinergic afferents.

10.
Front Aging Neurosci ; 14: 1006567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337707

RESUMO

Background: Degeneration of the cholinergic system plays an important role in cognitive impairment in Parkinson's disease (PD). Positron emission tomography (PET) imaging using the presynaptic vesicular acetylcholine transporter (VAChT) tracer [18F]Fluoroethoxybenzovesamicol ([18F]FEOBV) allows for regional assessment of cholinergic innervation. The purpose of this study was to perform a data-driven analysis to identify co-varying cholinergic regions and to evaluate the relationship of these with cognitive functioning in PD. Materials and methods: A total of 87 non-demented PD patients (77% male, mean age 67.9 ± 7.6 years, disease duration 5.8 ± 4.6 years) and 27 healthy control (HC) subjects underwent [18F]FEOBV brain PET imaging and neuropsychological assessment. A volume-of-interest based factor analysis was performed for both groups to identify cholinergic principal components (PCs). Results: Seven main PCs were identified for the PD group: (1) bilateral posterior cortex, (2) bilateral subcortical, (3) bilateral centro-cingulate, (4) bilateral frontal, (5) right-sided fronto-temporal, (6) cerebellum, and (7) predominantly left sided temporal regions. A complementary principal component analysis (PCA) analysis in the control group showed substantially different cholinergic covarying patterns. A multivariate linear regression analyses demonstrated PC3, PC5, and PC7, together with motor impairment score, as significant predictors for cognitive functioning in PD. PC3 showed most robust correlations with cognitive functioning (p < 0.001). Conclusion: A data-driven approach identified covarying regions in the bilateral peri-central and cingulum cortex as a key determinant of cognitive impairment in PD. Cholinergic vulnerability of the centro-cingulate network appears to be disease-specific for PD rather than being age-related. The cholinergic system may be an important contributor to regional and large scale neural networks involved in cognitive functioning.

11.
J Neurol Sci ; 440: 120357, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932698

RESUMO

BACKGROUND AND PURPOSE: Abnormal balance is poorly responsive to dopaminergic therapy in Parkinson's disease (PD). Decreased vestibular efficacy may contribute to imbalance in PD. The purpose of this study was to investigate the relationship between vestibular measures of dynamic posturography and imbalance in PD while accounting for confounder variables. METHODS: 106 patients with PD underwent dynamic posturography for the 6 conditions of the sensory integration test (SOT) using the Neurocom Equitest device. All SOT measures, nigrostriatal dopaminergic denervation ((+)-[11C]DTBZ PET), brain acetylcholinesterase ([11C]PMP PET), age, duration of disease, cognitive and parkinsonian motor scores, and ankle vibration sensitivity were used as regressors in a stepwise logistic regression model comparing PD patients with versus without imbalance defined as Hoehn and Yahr (HY) stage 2.5 or higher. RESULTS: The presence of imbalance was significantly associated with vestibular ratio COP RMS (P = 0.002) independently from visual ratio COP velocity (P = 0.012), thalamic acetylcholinesterase activity (P = 0.0032), cognition (P = 0.006), motor severity (P = 0.0039), age (P = 0.001), ankle vibration sensitivity (P = 0.0008), and borderline findings for somatosensory ratio COP velocity (P = 0.074) and visual ratio COP RMS (P = 0.078). Nigrostriatal dopaminergic denervation did not achieve significance. CONCLUSIONS: The inability to efficaciously utilize vestibular information to retain upright stance is a determinant of imbalance in PD independent from visual and somatosensory processing changes and nigrostriatal dopaminergic losses. Thalamic, but not cortical, cholinergic denervation incrementally predicted balance abnormality. Further research is needed to investigate an intrinsic role of the cholinergic thalamus in multi-sensory, in particular vestibular, processing functions of postural control in PD.


Assuntos
Doença de Parkinson , Acetilcolinesterase/metabolismo , Colinérgicos , Dopamina , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Equilíbrio Postural , Tálamo
12.
CPT Pharmacometrics Syst Pharmacol ; 11(10): 1382-1392, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895005

RESUMO

The Movement Disorder Society revised version of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts 2 and 3 reflect patient-reported functional impact and clinician-reported severity of motor signs of Parkinson's disease (PD), respectively. Total scores are common clinical outcomes but may obscure important time-based changes in items. We aim to analyze longitudinal disease progression based on MDS-UPRDS parts 2 and 3 item-level responses over time and as functions of Hoehn & Yahr (H&Y) stages 1 and 2 for subjects with early PD. The longitudinal item response theory (IRT) modeling is a novel statistical method addressing limitations in traditional linear regression approaches, such as ignoring varying item sensitivities and the sum score balancing out improvements and declines. We utilized a harmonized dataset consisting of six studies with 3573 subjects with early PD and 14,904 visits, and mean follow-up time of 2.5 years (±1.57). We applied both a unidimensional (each part separately) and multidimensional (both parts combined) longitudinal IRT models. We assessed the progression rates for both parts, anchored to baseline H&Y stages 1 and 2. Both the uni- and multidimensional longitudinal IRT models indicate significant worsening time effects in both parts 2 and 3. Baseline H&Y stage 2 was associated with significantly higher baseline severities, but slower progression rates in both parts, as compared with stage 1. Patients with baseline H&Y stage 1 demonstrated slower progression in part 2 severity compared to part 3, whereas patients with baseline H&Y stage 2 progressed faster in part 2 than part 3. The multidimensional model had a superior fit compared to the unidimensional models and it had excellent model performance.


Assuntos
Doença de Parkinson , Progressão da Doença , Humanos , Testes de Estado Mental e Demência , Índice de Gravidade de Doença
13.
J Neural Transm (Vienna) ; 129(8): 1001-1009, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753016

RESUMO

To examine regional cerebral vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxybenzovesamicol ([18F]-FEOBV) PET binding in Parkinson' disease (PD) patients with and without vestibular sensory conflict deficits (VSCD). To examine associations between VSCD-associated cholinergic brain deficits and postural instability and gait difficulties (PIGD). PD persons (M70/F22; mean age 67.6 ± 7.4 years) completed clinical assessments for imbalance, falls, freezing of gait (FoG), modified Romberg sensory conflict testing, and underwent VAChT PET. Volumes of interest (VOI)-based analyses included detailed thalamic and cerebellar parcellations. VSCD-associated VAChT VOI selection used stepwise logistic regression analysis. Vesicular monoamine transporter type 2 (VMAT2) [11C]dihydrotetrabenazine (DTBZ) PET imaging was available in 54 patients. Analyses of covariance were performed to compare VSCD-associated cholinergic deficits between patients with and without PIGD motor features while accounting for confounders. PET sampling passed acceptance criteria in 73 patients. This data-driven analysis identified cholinergic deficits in five brain VOIs associating with the presence of VSCD: medial geniculate nucleus (MGN) (P < 0.0001), para-hippocampal gyrus (P = 0.0043), inferior nucleus of the pulvinar (P = 0.047), fusiform gyrus (P = 0.035) and the amygdala (P = 0.019). Composite VSCD-associated [18F]FEOBV-binding deficits in these 5 regions were significantly lower in patients with imbalance (- 8.3%, F = 6.5, P = 0.015; total model: F = 5.1, P = 0.0008), falls (- 6.9%, F = 4.9, P = 0.03; total model F = 4.7, P = 0.0015), and FoG (- 14.2%, F = 9.0, P = 0.0043; total model F = 5.8, P = 0.0003), independent of age, duration of disease, gender and nigrostriatal dopaminergic losses. Post hoc analysis using MGN VAChT binding as the single cholinergic VOI demonstrated similar significant associations with imbalance, falls and FoG. VSCD-associated cholinergic network changes localize to distinct structures involved in multi-sensory, in particular vestibular, and multimodal cognitive and motor integration brain regions. Relative clinical effects of VSCD-associated cholinergic network deficits were largest for FoG followed by postural imbalance and falls. The MGN was the most significant region identified.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Colinérgicos , Feminino , Marcha , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
14.
Prog Brain Res ; 269(1): 345-371, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35248201

RESUMO

Dysfunction and degeneration of CNS cholinergic systems is a significant component of multi-system pathology in Parkinson's disease (PD). We review the basic architecture of human CNS cholinergic systems and the tools available for studying changes in human cholinergic systems. Earlier post-mortem studies implicated abnormalities of basal forebrain corticopetal cholinergic (BFCC) and pedunculopontine-laterodorsal tegmental (PPN-LDT) cholinergic projections in cognitive deficits and gait-balance deficits, respectively. Recent application of imaging methods, particularly molecular imaging, allowed more sophisticated correlation of clinical features with regional cholinergic deficits. BFCC projection deficits correlate with general and domain specific cognitive deficits, particularly for attentional and executive functions. Detailed analyses suggest that cholinergic deficits within the salience and cingulo-opercular task control networks, including both neocortical, thalamic, and striatal nodes, are a significant component of cognitive deficits in non-demented PD subjects. Both BFCC and PPN-LDT cholinergic projection systems, and striatal cholinergic interneuron (SChI), abnormalities are implicated in PD gait-balance disorders. In the context of experimental studies, these results indicate that disrupted attentional functions of BFCC and PPN-LDT cholinergic systems underlie impaired gait-balance functions. SChI dysfunction likely impairs intra-striatal integration of attentional and motor information. Thalamic and entorhinal cortex cholinergic deficits may impair multi-sensory integration. Overt degeneration of CNS systems may be preceded by increased activity of cholinergic neurons compensating for nigrostriatal dopaminergic deficits. Subsequent dysfunction and degeneration of cholinergic systems unmasks and exacerbates functional deficits secondary to dopaminergic denervation. Research on CNS cholinergic systems dysfunctions in PD requires a systems-level approach to understanding PD pathophysiology.


Assuntos
Doença de Parkinson , Colinérgicos , Neurônios Colinérgicos , Cognição , Corpo Estriado , Humanos , Doença de Parkinson/complicações
15.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336307

RESUMO

Sensor data from digital health technologies (DHTs) used in clinical trials provides a valuable source of information, because of the possibility to combine datasets from different studies, to combine it with other data types, and to reuse it multiple times for various purposes. To date, there exist no standards for capturing or storing DHT biosensor data applicable across modalities and disease areas, and which can also capture the clinical trial and environment-specific aspects, so-called metadata. In this perspectives paper, we propose a metadata framework that divides the DHT metadata into metadata that is independent of the therapeutic area or clinical trial design (concept of interest and context of use), and metadata that is dependent on these factors. We demonstrate how this framework can be applied to data collected with different types of DHTs deployed in the WATCH-PD clinical study of Parkinson's disease. This framework provides a means to pre-specify and therefore standardize aspects of the use of DHTs, promoting comparability of DHTs across future studies.


Assuntos
Metadados , Doença de Parkinson , Humanos
16.
Mov Disord ; 37(4): 713-723, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35037719

RESUMO

BACKGROUND: Altered cholinergic innervation plays a putative role in cognitive impairment in Parkinson's disease (PD) at least in advanced stages. Identification of the relationship between cognitive impairment and cholinergic innervation early in the disease will provide better insight into disease prognosis and possible early intervention. OBJECTIVE: The aim was to assess regional cholinergic innervation status in de novo patients with PD, with and without cognitive impairment. METHODS: Fifty-seven newly diagnosed, treatment-naive, PD patients (32 men, mean age 64.6 ± 8.2 years) and 10 healthy controls (5 men, mean age 54.6 ± 6.0 years) were included. All participants underwent cholinergic [18 F]fluoroethoxybenzovesamicol positron emission tomography and detailed neuropsychological assessment. PD patients were classified as either cognitively normal (PD-NC) or mild cognitive impairment (PD-MCI). Whole brain voxel-based group comparisons were performed. RESULTS: Results show bidirectional cholinergic innervation changes in PD. Both PD-NC and PD-MCI groups showed significant cortical cholinergic denervation compared to controls (P < 0.05, false discovery rate corrected), primarily in the posterior cortical regions. Higher-than-normal binding was most prominent in PD-NC in both cortical and subcortical regions, including the cerebellum, cingulate cortex, putamen, gyrus rectus, hippocampus, and amygdala. CONCLUSION: Altered cholinergic innervation is already present in de novo patients with PD. Posterior cortical cholinergic losses were present in all patients independent of cognitive status. Higher-than-normal binding in cerebellar, frontal, and subcortical regions in cognitively intact patients may reflect compensatory cholinergic upregulation in early-stage PD. Limited or failing cholinergic upregulation may play an important role in early, clinically evident cognitive impairment in PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Idoso , Colinérgicos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/psicologia
17.
J Nucl Med ; 63(3): 438-445, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34272323

RESUMO

Previous studies of animal models of Parkinson disease (PD) suggest an imbalance between striatal acetylcholine and dopamine, although other studies have questioned this. To our knowledge, there are no previous in vivo neuroimaging studies examining striatal acetylcholine-dopamine imbalance in PD patients. Using cholinergic and dopaminergic PET (18F-fluoroethoxybenzovesamicol [18F-FEOBV] and 11C-dihydrotetrabenazine [11C-DTBZ], respectively) and correlational tractography, our aim was to investigate the acetylcholine-dopamine interaction at 2 levels of dopaminergic loss in PD subjects: integrity loss of the nigrostriatal dopaminergic white matter tract and loss at the presynaptic-terminal level. Methods: The study involved 45 subjects with mild to moderate PD (36 men, 9 women; mean age, 66.3 ± 6.3 y, disease duration, 5.8 ± 3.6 y; Hoehn and Yahr stage, 2.2 ± 0.6) and 15 control subjects (9 men, 6 women; mean age, 69.1 ± 8.6 y). PET imaging was performed using standard protocols. We first estimated the integrity of the dopaminergic nigrostriatal white matter tracts in PD subjects by incorporating molecular information from striatal 11C-DTBZ PET into the fiber tracking process using correlational tractography (based on quantitative anisotropy [QA], a measure of tract integrity). Subsequently, we used voxel-based correlation to test the association of the mean QA of the nigrostriatal tract of each cerebral hemisphere with the striatal 18F-FEOBV distribution volume ratio (DVR) in PD subjects. The same analysis was performed for 11C-DTBZ DVR in 12 striatal subregions (presynaptic-terminal level). Results: Unlike 11C-DTBZ DVR in striatal subregions, the mean QA of the nigrostriatal tract of the most affected hemisphere showed a negative correlation with a striatal cluster of 18F-FEOBV DVR in PD subjects (corrected P = 0.039). We also found that the mean 18F-FEOBV DVR within this cluster was higher in the PD group than in the control group (P = 0.01). Cross-validation analyses confirmed these findings. We also found an increase in bradykinesia ratings associated with increased acetylcholine-dopamine imbalance in the most affected hemisphere (r = 0.41, P = 0.006). Conclusion: Our results provide evidence for the existence of striatal acetylcholine-dopamine imbalance in early PD and may provide an avenue for testing in vivo effects of therapeutic strategies aimed at restoring striatal acetylcholine-dopamine balance in PD.


Assuntos
Dopamina , Doença de Parkinson , Acetilcolina , Animais , Feminino , Humanos , Neuroimagem , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos
18.
Brain Commun ; 3(2): fcab109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34704022

RESUMO

Clinical effects of anti-cholinergic drugs implicate cholinergic systems alterations in the pathophysiology of some cardinal motor impairments in Parkinson's disease. The topography of affected cholinergic systems deficits and motor domain specificity are poorly understood. Parkinson's disease patients (n = 108) underwent clinical and motor assessment and vesicular acetylcholine transporter [18F]-fluoroethoxybenzovesamicol PET imaging. Volumes-of-interest-based analyses included detailed thalamic and cerebellar parcellations. Successful PET sampling for most of the small-sized parcellations was available in 88 patients. A data-driven approach, stepwise regression using the forward selection method, was used to identify cholinergic brain regions associating with cardinal domain-specific motor ratings. Regressions with motor domain scores for model-selected regions followed by confounder analysis for effects of age of onset, duration of motor disease and levodopa equivalent dose were performed. Among 7 model-derived regions associating with postural instability and gait difficulties domain scores three retained significance in confounder variable analysis: medial geniculate nucleus (standardized ß = -0.34, t = -3.78, P = 0.0003), lateral geniculate nucleus (ß = -0.32, t = -3.4, P = 0.001) and entorhinal cortex (ß = -0.23, t = -2.6, P = 0.011). A sub-analysis of non-episodic postural instability and gait difficulties scores demonstrated significant effects of the medial geniculate nucleus, entorhinal cortex and globus pallidus pars interna. Among 6 tremor domain model-selected regions two regions retained significance in confounder variable analysis: cerebellar vermis section of lobule VIIIb (ß = -0.22, t = -2.4, P = 0.021) and the putamen (ß = -0.23, t = -2.3, P = 0.024). None of the three model-selected variables for the rigidity domain survived confounder analysis. Two out of the four model-selected regions for the distal limb bradykinesia domain survived confounder analysis: globus pallidus pars externa (ß = 0.36, t = 3.9, P = 0.0097) and the paracentral lobule (ß = 0.26, t = 2.5, P = 0.013). Emphasizing the utility of a systems-network conception of the pathophysiology of Parkinson's disease cardinal motor features, our results are consistent with specific deficits in basal forebrain corticopetal, peduncupontine-laterodorsal tegmental complex, and medial vestibular nucleus cholinergic pathways, against the background of nigrostriatal dopaminergic deficits, contributing significantly to postural instability, gait difficulties, tremor and distal limb bradykinesia cardinal motor features of Parkinson's disease. Our results suggest significant and distinct consequences of degeneration of cholinergic peduncupontine-laterodorsal tegmental complex afferents to both segments of the globus pallidus. Non-specific regional cholinergic nerve terminal associations with rigidity scores likely reflect more complex multifactorial signalling mechanisms with smaller contributions from cholinergic pathways.

19.
Ann Neurol ; 90(1): 130-142, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33977560

RESUMO

OBJECTIVE: Attentional deficits following degeneration of brain cholinergic systems contribute to gait-balance deficits in Parkinson disease (PD). As a step toward assessing whether α4ß2* nicotinic acetylcholine receptor (nAChR) stimulation improves gait-balance function, we assessed target engagement of the α4ß2* nAChR partial agonist varenicline. METHODS: Nondemented PD participants with cholinergic deficits were identified with [18 F]fluoroethoxybenzovesamicol positron emission tomography (PET). α4ß2* nAChR occupancy after subacute oral varenicline treatment was measured with [18 F]flubatine PET. With a dose selected from the nAChR occupancy experiment, varenicline effects on gait, balance, and cognition were assessed in a double-masked placebo-controlled crossover study. Primary endpoints were normal pace gait speed and a measure of postural stability. RESULTS: Varenicline doses (0.25mg per day, 0.25mg twice daily [b.i.d.], 0.5mg b.i.d., and 1.0mg b.i.d.) produced 60 to 70% receptor occupancy. We selected 0.5mg orally b.i.d for the crossover study. Thirty-three participants completed the crossover study with excellent tolerability. Varenicline had no significant impact on the postural stability measure and caused slower normal pace gait speed. Varenicline narrowed the difference in normal pace gait speed between dual task and no dual task gait conditions, reduced dual task cost, and improved sustained attention test performance. We obtained identical conclusions in 28 participants with treatment compliance confirmed by plasma varenicline measurements. INTERPRETATION: Varenicline occupied α4ß2* nicotinic acetylcholine receptors, was tolerated well, enhanced attention, and altered gait performance. These results are consistent with target engagement. α4ß2* agonists may be worth further evaluation for mitigation of gait and balance disorders in PD. ANN NEUROL 2021;90:130-142.


Assuntos
Transtornos Neurológicos da Marcha/tratamento farmacológico , Marcha/efeitos dos fármacos , Agonistas Nicotínicos/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Equilíbrio Postural/efeitos dos fármacos , Vareniclina/uso terapêutico , Idoso , Encéfalo/diagnóstico por imagem , Estudos Cross-Over , Feminino , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Agonistas Nicotínicos/farmacologia , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Vareniclina/farmacologia
20.
ACS Chem Neurosci ; 12(9): 1472-1479, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33890459

RESUMO

Since the earliest days of nuclear medicine, there has been interest in using PET and SPECT imaging to interrogate and quantify the cholinergic system. In this Viewpoint we highlight key milestones in the development of cholinergic imaging agents, including identification of radiopharmaceuticals targeting the receptors, transporters, and enzymes of the cholinergic synapse, as well as fundamental developments in the radiopharmaceutical sciences (e.g., cyclotron targetry, radiochemistry) that have enabled translation of the most promising agents into clinical use. We also provide an overview of the current state-of-the-art in cholinergic PET imaging, with an emphasis on radiotracers that are in human studies at PET centers around the world.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Colinérgicos , Humanos , Radioquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA