Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 50(10): 1525-1536, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32383212

RESUMO

Initiation of adaptive immunity to particulate antigens in lymph nodes largely depends on their presentation by migratory dendritic cells (DCs). DC subsets differ in their capacity to induce specific types of immunity, allowing subset-specific DC-targeting to influence vaccination and therapy outcomes. Faithful drug design, however, requires exact understanding of subset-specific versus global activation mechanisms. cDC1, the subset of DCs that excel in supporting immunity toward viruses, intracellular bacteria, and tumors, express uniquely high levels of the pattern recognition receptor TLR3. Using various murine genetic models, we show here that both, the cDC1 and cDC2 subsets of cDCs are activated and migrate equally well in response to TLR3 stimulation in a cell extrinsic and TNF-α dependent manner, but that cDC1 show a unique requirement for type I interferon signaling. Our findings reveal common and differing pathways regulating DC subset migration, offering important insights for the design of DC-based vaccination and therapy approaches.


Assuntos
Células Dendríticas/imunologia , Intestinos/imunologia , Receptor 3 Toll-Like/metabolismo , Animais , Vacinas Anticâncer , Movimento Celular , Células Cultivadas , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Receptor 3 Toll-Like/imunologia
2.
Front Immunol ; 9: 2409, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386346

RESUMO

Systemic immunization with soluble flagellin (sFliC) from Salmonella Typhimurium induces mucosal responses, offering potential as an adjuvant platform for vaccines. Moreover, this engagement of mucosal immunity is necessary for optimal systemic immunity, demonstrating an interaction between these two semi-autonomous immune systems. Although TLR5 and CD103+CD11b+ cDC2 contribute to this process, the relationship between these is unclear in the early activation of CD4+ T cells and the development of antigen-specific B cell responses. In this work, we use TLR5-deficient mice and CD11c-cre.Irf4fl/fl mice (which have reduced numbers of cDC2, particularly intestinal CD103+CD11b+ cDCs), to address these points by studying the responses concurrently in the spleen and the mesenteric lymph nodes (MLN). We show that CD103+CD11b+ cDC2 respond rapidly and accumulate in the MLN after immunization with sFliC in a TLR5-dependent manner. Furthermore, we identify that whilst CD103+CD11b+ cDC2 are essential for the induction of primary T and B cell responses in the mucosa, they do not play such a central role for the induction of these responses in the spleen. Additionally, we show the involvement of CD103+CD11b+ cDC2 in the induction of Th2-associated responses. CD11c-cre.Irf4fl/fl mice showed a reduced primary FliC-specific Th2-associated IgG1 responses, but enhanced Th1-associated IgG2c responses. These data expand our current understanding of the mucosal immune responses promoted by sFliC and highlights the potential of this adjuvant for vaccine usage by taking advantage of the functionality of mucosal CD103+CD11b+ cDC2.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/metabolismo , Flagelina/imunologia , Animais , Antígenos CD/metabolismo , Antígeno CD11c/metabolismo , Imunofluorescência , Imunização , Imuno-Histoquímica , Cadeias alfa de Integrinas/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Receptor 5 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA