Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352911

RESUMO

Non-contact optical detection of ultrasound critically depends on the amount of light collected from the detection surface. Although it can be optimized in multiple ways for an ideal flat polished surface, industrial non-destructive testing and evaluation (NDT&E) usually requires optical detectors to be robust for unpolished material surfaces that are usually rough and curved. Confocal detectors provide the best light collection but must trade off sensitivity with depth of field. Specifically, detection efficiency increases with the numerical aperture (NA) of the detector, but the depth of field drops. Therefore, fast realignment of the detector focal point is critical for in-field applications. Here, we propose an optical distance and angle correction system (DACS) and demonstrate it in a kHz-rate laser-ultrasound inspection system. It incorporates a Sagnac interferometer on receive for the fast scanning of aircraft composites, which minimizes the required initial alignment. We show that DACS performs stably for different composite surfaces while providing ±2° angular and ±2 mm axial automatic correction with a maximum 100 ms realignment time.

2.
Rev Sci Instrum ; 79(4): 044702, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18447539

RESUMO

We realized a tunable continuous-wave terahertz source with megahertz frequency resolution. The system is based on optical heterodyning of two near-infrared distributed feedback diode lasers, each laser being stabilized by electronic feedback from a low-finesse quadrature interferometer. The control loop permits precisely linear laser frequency scans over >1200 GHz, and a beat signal linewidth of 1 MHz at 80 ms time scale. Using GaAs photomixers and log-periodic antennae, we achieve a signal-to-noise ratio of the terahertz power of >70 dB at 100 GHz and 100 ms integration time, and still approximately 30 dB at 1 THz. As an example for high-resolution terahertz spectroscopy, we characterize the transmission properties of a subwavelength metal grating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA