RESUMO
The epigenetic reader SntB was identified as an important transcriptional regulator of growth, development, and secondary metabolite synthesis in Aspergillus flavus. However, the underlying molecular mechanism is still unclear. In this study, by gene deletion and complementation, we found SntB is essential for mycelia growth, conidial production, sclerotia formation, aflatoxin synthesis, and host colonization. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analysis revealed that SntB played key roles in oxidative stress response of A. flavus, influencing related gene activity, especially catC encoding catalase. SntB regulated the expression activity of catC with or without oxidative stress, and was related to the expression level of the secretory lipase (G4B84_008359). The deletion of catC showed that CatC participated in the regulation of fungal morphogenesis, reactive oxygen species (ROS) level, and aflatoxin production, and that CatC significantly regulated fungal sensitive reaction and AFB1 yield under oxidative stress. Our study revealed the potential machinery that SntB regulated fungal morphogenesis, mycotoxin anabolism, and fungal virulence through the axle of from H3K36me3 modification to fungal virulence and mycotoxin biosynthesis. The results of this study shed light into the SntB-mediated transcript regulation pathways of fungal mycotoxin anabolism and virulence, which provided potential strategy to control the contamination of A. flavus and its aflatoxins.
Assuntos
Aflatoxinas , Aspergillus flavus , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Estresse Oxidativo , Aspergillus flavus/metabolismo , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aflatoxinas/biossíntese , Aflatoxinas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Antioxidantes/metabolismo , Virulência , Espécies Reativas de Oxigênio/metabolismo , Deleção de GenesRESUMO
PURPOSE: To compare the rotational stability and visual outcomes of plate-haptic toric intraocular lenses (IOLs) with and without a capsular tension ring (CTR) in paired eyes. SETTING: Eye and Ears, Nose, and Throat Hospital of Fudan University, Shanghai, China. DESIGN: Prospective, randomized, paired-eye study. METHODS: Patients with bilateral cataracts and coexisting regular corneal astigmatism were enrolled. The two eyes of each patient were randomly assigned to the CTR or non-CTR (NCTR) group. Both eyes of each patient were subjected to phacoemulsification and toric IOL implantation. CTRs were implanted into the eyes of the CTR group. All patients were followed-up for 12 months; the uncorrected distance visual acuity (UDVA), residual astigmatism (RAS), and rotational degree of the toric IOL were recorded. RESULTS: In total, 186 eyes of 93 patients were eligible for analysis. At each visit, UDVA improved significantly after surgery in all eyes (p < 0.001). The mean rotational degree and RAS were significantly smaller in the CTR group at the 2-week visit (p < 0.05). The toric IOLs achieved rotational stability at 1 week postoperatively in the CTR group while at 2 weeks postoperatively in the NCTR group. In the subgroup analyses, CTR co-implantation significantly reduced the 2-week IOL rotation in eyes meeting specific ocular measurements. CONCLUSIONS: CTR co-implantation could increase the rotational stability of plate-haptic toric IOLs, by reducing the amount of the IOL rotation in the early postoperative period and accelerating the stabilization of IOLs in the capsular bag.
RESUMO
ZnWO4@NiCo2O4 core-shell nanosheet array composites are synthesized on nickel foam via a two-step hydrothermal method. The optimal conditions, including a Ni(NO3)2·6H2O to Co(NO3)2·6H2O molar ratio of 2 : 1, 12 hours reaction time, and 120 °C temperature, yield a specific capacitance of 875 C g-1 at 1 A g-1. The electrode also maintains 81.1% capacitance after 10 000 cycles. The material's performance is attributed to its core-shell structure, which enhances ion diffusion and electron transport. This study presents a viable approach for high-performance supercapacitor electrodes.
RESUMO
The south China carp (Cyprinus carpio rubrofuscus) is an indigenous and important fish species, widely cultured in south China. However, part of individuals experienced retarded growth, the genetic basis of which has yet to be elucidated. In this study, whole-genome resequencing of 35 fast-growing and 35 retarded-growing south China carp were conducted to identify promising genes associated with retarded growth. Twelve candidate SNPs were detected and annotated to the Gpr75 gene, which has been reported to be related with body weight through regulating insulin homeostasis. RNA-seq analysis of muscle suggested that differentially expressed genes were significantly enriched in the insulin signaling pathway. Additionally, the fasting serum insulin level was significantly lower while the blood glucose level was significantly higher in the retarded-growing group. Our preliminary study provides insights into the genetic basis underlying the retarded growth and may facilitate further genetic improvement of south China carp.
Assuntos
Carpas , Proteínas de Peixes , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G , Sequenciamento Completo do Genoma , Animais , Carpas/genética , Carpas/crescimento & desenvolvimento , Carpas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , RNA-Seq , Insulina/metabolismo , Insulina/sangue , Insulina/genética , Glicemia/metabolismoRESUMO
BACKGROUND: Daytime sleepiness affects work efficiency, occupational safety, and public health. Although previous studies have reported an association between environmental carbon dioxide (eCO2) and daytime sleepiness, it has been challenging to draw a firm conclusion due to the lack of standardized sampling and profiling protocols. OBJECTIVE: We examined the effect of pure CO2 exposure at 5000 (ppm, parts per million) on daytime sleepiness. METHODS: Eleven healthy participants (males of 24 ± 3 years, mean ± SD) completed a four-nap multiple sleep latency test (MSLT) protocol in the environmentally controlled chamber under two conditions: the CO2 condition (4851 ± 229 ppm) and the Control condition (1102 ± 204 ppm). The subjective sleepiness level and cognitive performances were also evaluated using the Stanford Sleepiness Scale (SSS) questionnaire, Psychomotor Vigilance Test (PVT), and Stroop test after each nap session. RESULTS: A significant reduction in sleep latency was observed in the CO2 exposure condition (Control vs. CO2 = 13.1 ± 3.3 min vs. 9.7 ± 3.2 min). The subjective sleepiness scores were also significantly higher in the CO2 exposure condition than in the Control condition (Control vs. CO2 = 2.7 ± 0.5 vs. 4.7 ± 0.8). Cognitive responses after naps showed no significant difference across conditions. CONCLUSION: This study revealed that exposure to environmental CO2 at a concentration as high as the upper safety limit at work sites significantly shortened the sleep latency and enhanced subjective sleepiness during naps in the MSLT without affecting cognitive responses after each exposure. Our results demonstrated that exposure to high environmental CO2 induces daytime sleepiness that potentially compromises work efficiency and safety.
RESUMO
Titanium dioxide (TiO2) photocatalytic technology has the advantages of high catalytic activity, high chemical stability, nontoxicity, and low cost. Therefore, it finds widespread applications in the degradation of organic pollutants in water, antibacterial, environmental purification, and other fields. In this study, we have obtained a photocatalyst by modifying nanoTiO2 with the photosensitizer thioxanthone. The light-harvesting units of thioxanthone and nanoTiO2 can work synergistically to capture light energy. As a heterogeneous photocatalytic material, it can efficiently degrade organic dyes such as Rhodamine B, methyl blue and methyl orange. Specifically, the degradation rate of 0.1 mmol/L Rhodamine B can reach 97% after 35 min of irradiation, and methyl blue and methyl orange can also reach 98 and 56%, respectively.
RESUMO
Pyrops candelaria is one of the common pests of fruit trees, but the research on the pathogenic microorganisms it may carry is very limited. Therefore, it is essential to reveal the pathogenic microbes it carries and their potential hazards. This study found a new virus from the transcriptome of P. candelaria, which was first reported in P. candelaria and named PyCaV (Pyrops candelaria associated virus). RACE and bioinformatics assay revealed that the full length of PyCaV is 10,855 bp with the polyA tail, containing a single open-reading frame (ORF) encoding a polyprotein consisting of 3171 amino acid (aa). The virus has a typical iflavirus structure, including two rhv domains, an RNA helicase domain (HEL), a 3C cysteine protease domain (Pro), and an RNA-dependent RNA polymerase domain (RdRp). Further phylogenetic analysis revealed that this virus belongs to family Iflaviridae and sequence alignments analysis suggested PyCaV is a new member in an unassigned genus of family Iflaviridae. Further in-depth analysis of the virus infection showed that PyCaV is distributed throughout the whole P. candelaria, including its head, chest, and abdomen, but more PyCaV was identified in the chest. The distribution of PyCaV in different parts of P. candelaria was further explored, which showed that more PyCaV was detected in its piercing-sucking mouthparts and chest viscera. Statistical analysis showed that the PyCaV infection was affected by time and location.
RESUMO
Objective: In order to address the issues of inconvenience, high medical costs, and lack of universality associated with traditional knee rehabilitation equipment, a portable intelligent wheelchair for knee rehabilitation was designed in this study. Methods: Based on the analysis of the knee joint's structure and rehabilitation mechanisms, an electric pushrod-driven rehabilitation institution was developed. A multi-functional module was designed with a modular approach, and the control of the wheelchair body and each functional module was implemented using an STM32 single-chip microcomputer. A three-dimensional model was established using SolidWorks software. In conjunction with Adams and Ansys simulation software, kinematic and static analyses were conducted on the knee joint rehabilitation institution and its core components. A prototype was constructed to verify the equipment's actual performance. Results: According to the prototype testing, the actual range of motion for the knee joint swing rod is 15.1°~88.9°, the angular speed of the swing rod ranges from -7.9 to 8.1°/s, the angular acceleration of the swing rod varies from -4.2 to 1.6°/s², the thrust range of the electric pushrod is -82.6 to 153.1 N, and the maximum displacement of the load pedal is approximately 1.7 mm, with the leg support exhibiting a maximum deformation of about 1.5 mm. Conclusion: The intelligent knee joint rehabilitation wheelchair meets the designed functions and its actual performance aligns with the design criteria, thus validating the rationality and feasibility of the structural design.
Assuntos
Desenho de Equipamento , Articulação do Joelho , Cadeiras de Rodas , Humanos , Fenômenos Biomecânicos , Amplitude de Movimento Articular , SoftwareRESUMO
INTRODUCTION: Tobacco smoking is a major risk factor for various diseases worldwide, including pancreatic exocrine diseases such as pancreatitis and pancreatic cancer (PC). Currently, few studies have examined the impact of smoking cessation on the likelihood of common pancreatic exocrine diseases. This study sought to determine whether smoking cessation would reduce pancreatitis and PC morbidity. METHODS: This cohort study used data from the UK Biobank (UKB) to examine the association between smoking status and the likelihood of pancreatitis and PC among 492855 participants. The subjects were divided into never smokers, ex-smokers, and current smokers. Using a multivariate-adjusted binary logistic regression model, we analyzed the relationship between different smoking conditions and the likelihood of pancreatitis and PC. Further, we studied the impact of smoking cessation on pancreatitis and PC compared with current smoking. RESULTS: After adjusting for potential confounders, current smokers had higher odds for acute pancreatitis (AP) (AOR=1.38; 95% CI: 1.18-1.61), chronic pancreatitis (CP) (AOR=3.29; 95% CI: 2.35-4.62) and PC (AOR=1.72; 95% CI: 1.42-2.09). People who quit smoking had comparable odds for the diseases as those who never smoked. Compared with current smokers, ex-smokers had reduced odds for AP (AOR=0.76; 95% CI: 0.64-0.89), CP (AOR=0.31; 95% CI: 0.21-0.46), and PC (AOR=0.62; 95% CI: 0.50-0.76). Subgroup analysis revealed reduced odds for these pancreatic diseases in males and females. CONCLUSIONS: Smokers have an increased odds for pancreatitis and pancreatic cancer. Moreover, smoking cessation can significantly reduce the odds for acute pancreatitis, chronic pancreatitis and pancreatic cancer.
RESUMO
SCOPE: Naringenin (NAR) possesses unique anti-inflammatory, antiapoptosis effects and various bioactivities; however, its role against radiation-induced intestinal injury (RIII) remains unclear. This study aims to investigate whether NAR has protective effects against radiation-induced intestinal injury and the underlying mechanisms. METHODS AND RESULTS: C57BL/6J mice are exposed to a single dose of 13 Gy X-ray total abdominal irradiation (TAI), then gavaged with NAR for 7 days. NAR treatment prolongs the survival rate, protects crypts and villi from damage, alleviates the level of radiation-induced inflammation, and mitigates intestinal barrier damage in the irradiated mice. Additionally, NAR reduces immune cell infiltration and intestinal epithelial cell apoptosis. NAR also shows radioprotective effects in human colon cancer cells (HCT116) and human intestinal epithelial cells (NCM460). It reduces cell damage by reducing intracellular calcium ion levels and reactive oxygen species (ROS) levels. NAR-mediated radioprotection is associated with the downregulation of transient receptor potential vanilloid 6 (TRPV6), and inhibition of apoptosis pathway. Notably, treatment with NAR fails to further increase the protective effects of the TRPV6 inhibitor 2-APB, indicating that TRPV6 inhibition is essential for NAR activity. CONCLUSION: NAR inhibits the apoptosis pathway by downregulating TRPV6 and reducing calcium ion level, thereby alleviating RIII. Therefore, NAR is a promising therapeutic drug for RIII.
Assuntos
Apoptose , Flavanonas , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio , Canais de Cátion TRPV , Animais , Flavanonas/farmacologia , Humanos , Canais de Cátion TRPV/metabolismo , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Camundongos , Protetores contra Radiação/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Mucosa Intestinal/metabolismo , Células HCT116 , Canais de Cálcio/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/efeitos da radiação , Cálcio/metabolismo , Lesões por Radiação/tratamento farmacológicoAssuntos
Doenças Pulmonares Intersticiais , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/complicações , Síndrome de Sjogren/diagnóstico , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/diagnóstico , Feminino , Pessoa de Meia-IdadeRESUMO
Anterior capsular contraction syndrome (ACCS) is a challenging complication that can occur following phacoemulsification cataract surgery. Characterized by capsular bag wrinkling, intraocular lens (IOL) decentration and tilt, ACCS can have negative effects on visual outcomes and patient satisfaction. This review aims to investigate the pathogenesis, clinical course, influencing factors, and intervention approaches for ACCS after cataract surgery. By understanding the underlying mechanisms and identifying factors that contribute to ACCS, surgeons can enhance their ability to predict and manage this complication. Various intervention strategies are discussed, highlighting their importance in reducing complications and improving surgical outcomes. However, further research is needed to determine optimal prevention and management strategies through long-term follow-up and comparative analyses. Advancements in this field will ultimately lead to improved visual outcomes and optimized cataract surgery for patients.
RESUMO
Drought is a major threat to alfalfa (Medicago sativa L.) production. The discovery of important alfalfa genes regulating drought response will facilitate breeding for drought-resistant alfalfa cultivars. Here, we report a genome-wide association study of drought resistance in alfalfa. We identified and functionally characterized an MYB-like transcription factor gene (MsMYBH), which increases the drought resistance in alfalfa. Compared with the wild-types, the biomass and forage quality were enhanced in MsMYBH overexpressed plants. Combined RNA-seq, proteomics and chromatin immunoprecipitation analysis showed that MsMYBH can directly bind to the promoters of MsMCP1, MsMCP2, MsPRX1A and MsCARCAB to improve their expression. The outcomes of such interactions include better water balance, high photosynthetic efficiency and scavenge excess H2O2 in response to drought. Furthermore, an E3 ubiquitin ligase (MsWAV3) was found to induce MsMYBH degradation under long-term drought, via the 26S proteasome pathway. Furthermore, variable-number tandem repeats in MsMYBH promoter were characterized among a collection of germplasms, and the variation is associated with promoter activity. Collectively, our findings shed light on the functions of MsMYBH and provide a pivotal gene that could be leveraged for breeding drought-resistant alfalfa. This discovery also offers new insights into the mechanisms of drought resistance in alfalfa.
Assuntos
Resistência à Seca , Plântula , Plântula/genética , Medicago sativa/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estudo de Associação Genômica Ampla , Peróxido de Hidrogênio/metabolismo , Melhoramento Vegetal , SecasRESUMO
Glycyrrhiza uralensis is a saline-alkali-tolerant plant whose aerial parts are rich in flavonoids; however, the role of these flavonoids in saline-alkali tolerance remains unclear. Herein, we performed physiological, metabolomics, and transcriptomics analyses in G. uralensis leaves under alkaline salt stress for different durations. Alkaline salt stress stimulated excessive accumulation of reactive oxygen species and consequently destroyed the cell membrane, causing cell death, and G. uralensis initiated osmotic regulation and the antioxidant system to respond to stress. In total, 803 metabolites, including 244 flavonoids, were detected via metabolomics analysis. Differentially altered metabolites and differentially expressed genes were coenriched in flavonoid-related pathways. Genes such as novel.4890, Glyur001511s00039602, and Glyur000775s00025737 were highly expressed, and flavonoid metabolites such as 2'-hydroxygenistein, apigenin, and 3-O-methylquercetin were upregulated. Thus, flavonoids as nonenzymatic antioxidants play an important role in stress tolerance. These findings provide novel insights into the response of G. uralensis to alkaline salt stress.
Assuntos
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza uralensis/genética , Flavonoides/metabolismo , Estresse Salino , Antioxidantes/metabolismo , Perfilação da Expressão Gênica , Álcalis/metabolismo , Glycyrrhiza/genéticaRESUMO
PURPOSE: To compare the rotational stability of a monofocal and a diffractive multifocal toric intraocular lens(IOLs) with identical design and material. METHODS: This prospective study enrolled patients who underwent plate-haptic toric IOL (AT TORBI 709 M and AT LISA 909 M) implantation. Propensity score matching (PSM) was performed to balance baseline factors. Follow-up examinations were conducted at 1 h, 1 day, 3 days, 1 week, 2 weeks, 1 month, and 3 months postoperatively. A linear mixed model of repeated measures was used to investigate the changes in IOL rotation over time. A 2-week timeframe was utilized to assess differences in IOL rotation between the two groups. RESULT: After PSM, a total of 126 eyes were selected from each group for further analysis. Postoperatively, the time course of IOL rotation change in the two groups remained consistent, with the greatest rotation occurring between 1 h and 1 day postoperatively. At the 2-week postoperative mark, the monofocal toric IOL exhibited a higher degree of rotation compared to the multifocal toric IOL (5.40 ± 7.77° vs. 3.53 ± 3.54°, P = 0.015). In lens thickness(LT) ≥ 4.5 mm and white-to-white distance(WTW) ≥ 11.6 mm subgroups, the monofocal toric IOL rotated greater than the multifocal toric IOL (P = 0.026 and P = 0.011, respectively). CONCLUSION: The diffractive multifocal toric IOL exhibits superior rotational stability compared to the monofocal toric IOL, especially in subgroups LT ≥ 4.5 mm and WTW ≥ 11.6 mm. Moreover, the time course of IOL rotation change is consistent for both, with the maximum rotation occurring between 1 h and 1 day postoperatively.
Assuntos
Astigmatismo , Lentes Intraoculares , Facoemulsificação , Humanos , Implante de Lente Intraocular , Estudos Prospectivos , Pseudofacia/cirurgia , Acuidade Visual , Pontuação de Propensão , Astigmatismo/cirurgia , Refração OcularRESUMO
Toric intraocular lenses (IOLs) have been developed to enhance visual acuity impaired by cataracts and correct corneal astigmatism. However, residual astigmatism caused by postoperative rotation of the toric IOL is an important factor affecting visual quality after implantation. To decrease the rotation of the toric IOL, significant advancements have been made in understanding the characteristics of toric IOL rotation, the factors influencing its postoperative rotation, as well as the development of various measurement techniques and interventions to address this issue. It has been established that factors such as the patient's preoperative refractive status, biological parameters, surgical techniques, postoperative care, and long-term management significantly impact the rotational stability of the toric IOL. Clinicians should adopt a personalized approach that considers these factors to minimize the risk of toric IOL rotation and ensure optimal outcomes for each patient. This article reviews the influence of various factors on toric IOL rotational stability. It discusses new challenges that may be encountered to reduce and intervene with rotation after toric IOL implantation in the foreseeable future.
Assuntos
Canagliflozina , Nefropatias Diabéticas , Quimioterapia Combinada , Valsartana , Humanos , Canagliflozina/uso terapêutico , Valsartana/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Masculino , Resultado do Tratamento , Feminino , Pessoa de Meia-Idade , IdosoRESUMO
RNA modifications play key roles in eukaryotes, but the functions in Aspergillus flavus are still unknown. Temperature has been reported previously to be a critical environmental factor that regulates the aflatoxin production of A. flavus, but much remains to be learned about the molecular networks. Here, we demonstrated that 12 kinds of RNA modifications in A. flavus were significantly changed under 29 °C compared to 37 °C incubation; among them, m6A was further verified by a colorimetric method. Then, the transcriptome-wide m6A methylome and m6A-altered genes were comprehensively illuminated through methylated RNA immunoprecipitation sequencing and RNA sequencing, from which 22 differentially methylated and expressed transcripts under 29 °C were screened out. It is especially notable that AFCA_009549, an aflatoxin biosynthetic pathway gene (aflQ), and the m6A methylation of its 332nd adenine in the mRNA significantly affect aflatoxin biosynthesis in A. flavus both on media and crop kernels. The content of sterigmatocystin in both ΔaflQ and aflQA332C strains was significantly higher than that in the WT strain. Together, these findings reveal that RNA modifications are associated with secondary metabolite biosynthesis of A. flavus.
Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aflatoxinas/metabolismo , Adenina/metabolismo , RNA/metabolismoRESUMO
Purpose: To investigate the effects of postoperative astigmatism on the visual outcomes following presbyopia-correcting surgery with multifocal intraocular lens implantation. Methods: A comprehensive literature search was conducted using PubMed, Embase, and Web of Science for articles published until January 2023. Additionally, we included retrospective case series and prospective comparative studies. The combined mean difference (MD) with 95% confidence intervals (CI) and odds ratio (OR) with 95% CI were used to express continuous and categorical outcomes, respectively. All statistical analyses were performed using Review Manager (version 5.4.1). Results: We included nine eligible studies that analyzed 3,088 eyes. The proportion of eyes with useful postoperative visual acuity (logMAR ≤ 0.20) and residual astigmatism significantly differed with respect to the magnitude of astigmatism and presence/absence of blurred vision (p < 0.001 for both). Additionally, the mean uncorrected distance visual acuity (MD, 0.14; 95% CI, 0.06 to 0.21; p = 0.0003) and uncorrected intermediate visual acuity (MD, 0.07; 95% CI, 0.00 to 0.13; p = 0.04), but not the uncorrected near visual acuity (MD, 0.02; 95%CI-0.01 to 0.05; p = 0.17), significantly differed according to the magnitude of astigmatism. Conclusion: Astigmatism, even at low levels (≥ 0.5D), has a significant effect on visual outcomes, especially on UDVA and UIVA, following multifocal intraocular lens implantation. Accurate preoperative and postoperative evaluation of astigmatism is important.
RESUMO
As a filamentous pathogenic fungus with high-yield of aflatoxin B1, Aspergillus flavus is commonly found in various agricultural products. It is crucial to develop effective strategies aimed at the prevention of the contamination of A. flavus and aflatoxin. Hexokinase AfHxk1 is a critical enzyme in fungal glucose metabolism. However, the role of AfHxk1 in A. flavus development, aflatoxin biosynthesis, and virulence has not yet been explored. In this study, afHxk1 gene deletion mutant (ΔafHxk1), complementary strain (Com-afHxk1), and the domain deletion strains (afHxk1ΔD1 and afHxk1ΔD2) were constructed by homologous recombination. Phenotype study and RT-qPCR revealed that AfHxk1 upregulates mycelium growth and spore and sclerotia formation, but downregulates AFB1 biosynthesis through related classical signaling pathways. Invading models and environmental stress analysis revealed that through involvement in carbon source utilization, conidia germination, and the sensitivity response of A. flavus to a series of environmental stresses, AfHxk1 deeply participates in the regulation of pathogenicity of A. flavus to crop kernels and Galleria mellonella larvae. The construction of domain deletion strains, afHxk1ΔD1 and afHxk1ΔD2, further revealed that AfHxk1 regulates the morphogenesis, mycotoxin biosynthesis, and the fungal pathogenicity mainly through its domain, Hexokinase_2. The results of this study revealed the biological role of AfHxk1 in Aspergillus spp., and might provide a novel potential target for the early control of the contamination of A. flavus.