Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Neurosci ; : 1-15, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738512

RESUMO

OBJECTIVE: Inflammatory pain, is caused by lesions or diseases of the somatosensory tissue, is a prevalent chronic condition that profoundly impacts the quality of life. However, clinical treatment for this type of pain remains limited. Traditionally, the stimulation of microglia and subsequent inflammatory reactions are considered crucial elements to promote the worsening of inflammatory pain. Recent research has shown the crucial importance of the cGAS-STING pathway in promoting inflammation. It is still uncertain if the cGAS-STING pathway plays the role in the fundamental cause of inflammatory pain. We aim to explore the treatment of inflammatory pain by interfering with cGAS-STING signaling pathway. METHODS: In this study, we established an inflammatory pain model by CFA into the plantar of mice. Activation of microglia, various inflammatory factors and cGAS-STING protein in the spinal dorsal horn were evaluated. Immunofluorescence staining was used to observe the cellular localization of cGAS and STING. The cGAS-STING pathway proteins expression and mRNA expression of indicated microglial M1/M2 phenotypic markers in the BV2 microglia were detected. STING inhibitor C-176 was intrathecal injected into mice with inflammatory pain, and the pain behavior and microglia were observed. RESULTS: This research showed that injecting CFA into the left hind paw of mice caused mechanical allodynia and increased inflammation in the spine. Our research results suggested that the cGAS-STING pathway had a function in the inflammation mediated by microglia in the spinal cord dorsal horn. Blocking the cGAS-STING pathway using STING antagonists (C-176) led to reduced release of inflammatory factors and prevented M1 polarization of BV2 microglia in a laboratory setting. Additionally, intrathecal administration of C-176 reduced the allodynia in CFA treated mice. CONCLUSION: Our results suggest that inhibiting microglial polarization through the cGAS-STING pathway represents a potential novel therapeutic strategy for inflammatory pain.

2.
Mol Brain ; 16(1): 70, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770900

RESUMO

Inflammatory pain is a commonly observed clinical symptom in a range of acute and chronic diseases. However, the mechanism of inflammatory pain is far from clear yet. Rab11a, a small molecule guanosine triphosphate enzyme, is reported to regulate orofacial inflammatory pain in our previous works. However, the mechanism of Rab11a's involvement in the regulation of inflammatory pain remains obscure. Here, we aim to elucidate the potential mechanisms through which Rab11a contributes to the development of inflammatory pain in the spinal level. It's shown that neurons, rather than glial cells, were the primary cell type expressing Rab11a in the spinal dorsal horn (SDH). After intra-plantar injection of CFA, both the number of Fos/Rab11a-immunopositive neurons and the expression of Rab11a were increased. Administration of Rab11a-shRNA into the SDH resulted in significantly analgesic effect in mice with CFA injection. Application of Rab11a-shRNA also reduced the NMDA receptor-mediated excitatory post-synaptic current (EPSC) and the spike number of neurons in lamina II of the SDH in mice with CFA injection, without affecting the presynaptic glutamate release and the postsynaptic AMPA receptor-mediated EPSC. Our results thus suggest that the enhanced expression of neuronal Rab11a may be important for the process of inflammatory pain in mice with CFA injection, which is likely mediated by Rab11a's potentiation of the competence of post-synaptic NMDAR and spiking of SDH neurons.


Assuntos
Dor , Medula Espinal , Animais , Camundongos , Adjuvante de Freund , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Neurônios/metabolismo , Dor/complicações , Dor/metabolismo , Células do Corno Posterior , Receptores de N-Metil-D-Aspartato/metabolismo , RNA Interferente Pequeno/metabolismo , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA