Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
ACS Sens ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147600

RESUMO

Microtubule (MT) dynamics is tightly regulated by microtubule-associated proteins (MAPs) and various post-translational modifications (PTMs) of tubulin. Here, we introduce OligoMT and OligoTIP as genetically encoded oligomeric MT binders designed for real-time visualization and manipulation of MT behaviors within living cells. OligoMT acts as a reliable marker to label the MT cytoskeleton, while OligoTIP allows for live monitoring of the growing MT plus-ends. These engineered MT binders have been successfully utilized to label the MT network, monitor cell division, track MT plus-ends, and assess the effect of tubulin acetylation on the MT stability at the single-cell level. Moreover, OligoMT and OligoTIP can be repurposed as biosensors for quantitative assessment of drug actions and for reporting enzymatic activity. Overall, these engineered MT binders hold promise for advancing the mechanistic dissection of MT biology and have translational applications in cell-based high-throughput drug discovery efforts.

2.
Heliyon ; 10(13): e33760, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071633

RESUMO

Objectives: To develop a multi-omics prognostic model integrating transcriptomics and radiomics for predicting overall survival in patients with glioblastoma multiforme (GBM), and investigate the biological pathways of radiomics patterns. Materials and methods: Transcription profiles of GBM patients and normal controls were used to obtain differentially expressed mRNAs and long non-coding RNAs (lncRNAs). Radiomics features were extracted from magnetic resonance imaging (MRI). Least absolute shrinkage and selection operator (LASSO) Cox regression was employed to select survival-associated features for the construction of transcriptomics and radiomics signatures. Genes associated with GBM prognosis were identified through the analysis of lncRNA-mRNA co-expression networks and Weighted Gene Co-expression Network Analysis (WGCNA), and their biological pathways were investigated using Genomes enrichment analysis. Transcriptomics, radiomics, and clinical data were integrated to evaluate the multi-omics prognostic model's performance. Results: LASSO Cox regression yielded 21 survival-related features, including 19 transcriptomics features and 2 radiomics features. Based on transcriptomics and radiomics signature, GBM patients were classified as high-risk or low-risk. The genes obtained from the co-expression network screen were associated with microtubule binding, while those from the WGCNA screen were associated with growth factor receptor binding. In the training set, the AUC values for the multi-omics model and clinical model were 0.964 and 0.830, respectively, while in the validation set, they were 0.907 and 0.787. The multi-omics prognostic model outperformed the clinical prognostic model. Conclusions: The co-expression network and WGCNA methods revealed genes associated with multiple biological pathways in GBM. The multi-omics prognostic model demonstrated excellent performance and indicated significant potential for clinical application.

3.
ACS Appl Mater Interfaces ; 16(29): 37770-37782, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38987992

RESUMO

Skin wound healing is a complex process that requires appropriate treatment and management. Using a single scaffold to dynamically manipulate angiogenesis, cell migration and proliferation, and tissue reconstruction during skin wound healing is a great challenge. We developed a hybrid scaffold platform that integrates the spatiotemporal delivery of bioactive cues with topographical cues to dynamically manipulate the wound-healing process. The scaffold comprised gelatin methacryloyl hydrogels and electrospun poly(ε-caprolactone)/gelatin nanofibers. The hydrogels had graded cross-linking densities and were loaded with two different functional bioactive peptides. The nanofibers comprised a radially aligned nanofiber array layer and a layer of random fibers. During the early stages of wound healing, the KLTWQELYQLKYKGI peptide, which mimics vascular endothelial growth factor, was released from the inner layer of the hydrogel to accelerate angiogenesis. During the later stages of wound healing, the IKVAVS peptide, which promotes cell migration, synergized with the radially aligned nanofiber membrane to promote cell migration, while the nanofiber membrane also supported further cell proliferation. In an in vivo rat skin wound-healing model, the hybrid scaffold significantly accelerated wound healing and collagen deposition, and the ratio of type I to type III collagen at the wound site resembled that of normal skin. The prepared scaffold dynamically regulated the skin tissue regeneration process in stages to achieve rapid wound repair with clinical application potential, providing a strategy for skin wound repair.


Assuntos
Gelatina , Hidrogéis , Nanofibras , Cicatrização , Nanofibras/química , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Gelatina/química , Ratos , Movimento Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Humanos , Alicerces Teciduais/química , Pele/efeitos dos fármacos , Pele/lesões , Poliésteres/química , Peptídeos/química , Peptídeos/farmacologia , Metacrilatos/química , Masculino , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Laminina , Fragmentos de Peptídeos
4.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850215

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is primarily characterized by progressive cerebellar degeneration, including gray matter atrophy and disrupted anatomical and functional connectivity. The alterations of cerebellar white matter structural network in SCA3 and the underlying neurobiological mechanism remain unknown. Using a cohort of 20 patients with SCA3 and 20 healthy controls, we constructed cerebellar structural networks from diffusion MRI and investigated alterations of topological organization. Then, we mapped the alterations with transcriptome data from the Allen Human Brain Atlas to identify possible biological mechanisms for regional selective vulnerability to white matter damage. Compared with healthy controls, SCA3 patients exhibited reduced global and nodal efficiency, along with a widespread decrease in edge strength, particularly affecting edges connected to hub regions. The strength of inter-module connections was lower in SCA3 group and negatively correlated with the Scale for the Assessment and Rating of Ataxia score, International Cooperative Ataxia Rating Scale score, and cytosine-adenine-guanine repeat number. Moreover, the transcriptome-connectome association study identified the expression of genes involved in synapse-related and metabolic biological processes. These findings suggest a mechanism of white matter vulnerability and a potential image biomarker for the disease severity, providing insights into neurodegeneration and pathogenesis in this disease.


Assuntos
Cerebelo , Conectoma , Doença de Machado-Joseph , Transcriptoma , Humanos , Masculino , Feminino , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Pessoa de Meia-Idade , Adulto , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/diagnóstico por imagem , Doença de Machado-Joseph/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética
5.
Cancer Imaging ; 24(1): 63, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773670

RESUMO

BACKGROUND: Accurate segmentation of gastric tumors from CT scans provides useful image information for guiding the diagnosis and treatment of gastric cancer. However, automated gastric tumor segmentation from 3D CT images faces several challenges. The large variation of anisotropic spatial resolution limits the ability of 3D convolutional neural networks (CNNs) to learn features from different views. The background texture of gastric tumor is complex, and its size, shape and intensity distribution are highly variable, which makes it more difficult for deep learning methods to capture the boundary. In particular, while multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. METHODS: In this study, we propose a new cross-center 3D tumor segmentation method named Hierarchical Class-Aware Domain Adaptive Network (HCA-DAN), which includes a new 3D neural network that efficiently bridges an Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale context features from the CT images with anisotropic resolution, and a hierarchical class-aware domain alignment (HCADA) module for adaptively aligning multi-scale context features across two domains by integrating a class attention map with class-specific information. We evaluate the proposed method on an in-house CT image dataset collected from four medical centers and validate its segmentation performance in both in-center and cross-center test scenarios. RESULTS: Our baseline segmentation network (i.e., AsTr) achieves best results compared to other 3D segmentation models, with a mean dice similarity coefficient (DSC) of 59.26%, 55.97%, 48.83% and 67.28% in four in-center test tasks, and with a DSC of 56.42%, 55.94%, 46.54% and 60.62% in four cross-center test tasks. In addition, the proposed cross-center segmentation network (i.e., HCA-DAN) obtains excellent results compared to other unsupervised domain adaptation methods, with a DSC of 58.36%, 56.72%, 49.25%, and 62.20% in four cross-center test tasks. CONCLUSIONS: Comprehensive experimental results demonstrate that the proposed method outperforms compared methods on this multi-center database and is promising for routine clinical workflows.


Assuntos
Imageamento Tridimensional , Redes Neurais de Computação , Neoplasias Gástricas , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/patologia , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Aprendizado Profundo
6.
Cereb Cortex ; 34(13): 63-71, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696609

RESUMO

To investigate potential correlations between the susceptibility values of certain brain regions and the severity of disease or neurodevelopmental status in children with autism spectrum disorder (ASD), 18 ASD children and 15 healthy controls (HCs) were recruited. The neurodevelopmental status was assessed by the Gesell Developmental Schedules (GDS) and the severity of the disease was evaluated by the Autism Behavior Checklist (ABC). Eleven brain regions were selected as regions of interest and the susceptibility values were measured by quantitative susceptibility mapping. To evaluate the diagnostic capacity of susceptibility values in distinguishing ASD and HC, the receiver operating characteristic (ROC) curve was computed. Pearson and Spearman partial correlation analysis were used to depict the correlations between the susceptibility values, the ABC scores, and the GDS scores in the ASD group. ROC curves showed that the susceptibility values of the left and right frontal white matter had a larger area under the curve in the ASD group. The susceptibility value of the right globus pallidus was positively correlated with the GDS-fine motor scale score. These findings indicated that the susceptibility value of the right globus pallidus might be a viable imaging biomarker for evaluating the neurodevelopmental status of ASD children.


Assuntos
Transtorno do Espectro Autista , Encéfalo , Ferro , Imageamento por Ressonância Magnética , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Masculino , Feminino , Criança , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Ferro/metabolismo , Ferro/análise , Pré-Escolar , Mapeamento Encefálico/métodos , Substância Branca/diagnóstico por imagem , Globo Pálido/diagnóstico por imagem
7.
Brain Struct Funct ; 229(4): 959-970, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502329

RESUMO

Hemifacial spasm (HFS) is a syndrome characterized by involuntary contractions of the facial muscles innervated by the ipsilateral facial nerve. Currently, microvascular decompression (MVD) is an effective treatment for HFS. Diffusion weighted imaging (DWI) is a non-invasive advanced magnetic resonance technique that allows us to reconstruct white matter (WM) virtually based on water diffusion direction. This enables us to model the human brain as a complex network using graph theory. In our study, we recruited 32 patients with HFS and 32 healthy controls to analyze and compare the topological organization of whole-brain white matter networks between the groups. We also explored the potential relationships between altered topological properties and clinical outcomes. Compared to the HC group, the white matter network was disrupted in both preoperative and postoperative groups of HFS patients, mainly located in the somatomotor network, limbic network, and default network (All P < 0.05, FDR corrected). There was no significant difference between the preoperative and postoperative groups (P > 0.05, FDR corrected). There was a correlation between the altered topological properties and clinical outcomes in the postoperative group of patients (All P < 0.05, FDR corrected). Our findings indicate that in HFS, the white matter structural network was disrupted before and after MVD, and that these alterations in the postoperative group were correlated with the clinical outcomes. White matter alteration here described may subserve as potential biomarkers for HFS and may help us identify patients with HFS who can benefit from MVD and thus can help us make a proper surgical patient selection.


Assuntos
Espasmo Hemifacial , Cirurgia de Descompressão Microvascular , Substância Branca , Humanos , Espasmo Hemifacial/diagnóstico por imagem , Espasmo Hemifacial/cirurgia , Cirurgia de Descompressão Microvascular/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/cirurgia , Resultado do Tratamento , Imagem de Difusão por Ressonância Magnética , Estudos Retrospectivos
8.
Neuroimage ; 290: 120555, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447683

RESUMO

Aberrant susceptibility due to iron level abnormality and brain network disconnections are observed in Alzheimer's disease (AD), with disrupted iron homeostasis hypothesized to be linked to AD pathology and neuronal loss. However, whether associations exist between abnormal quantitative susceptibility mapping (QSM), brain atrophy, and altered brain connectome in AD remains unclear. Based on multi-parametric brain imaging data from 30 AD patients and 26 healthy controls enrolled at the China-Japan Friendship Hospital, we investigated the abnormality of the QSM signal and volumetric measure across 246 brain regions in AD patients. The structural and functional connectomes were constructed based on diffusion MRI tractography and functional connectivity, respectively. The network topology was quantified using graph theory analyses. We identified seven brain regions with both reduced cortical thickness and abnormal QSM (p < 0.05) in AD, including the right superior frontal gyrus, left superior temporal gyrus, right fusiform gyrus, left superior parietal lobule, right superior parietal lobule, left inferior parietal lobule, and left precuneus. Correlations between cortical thickness and network topology computed across patients in the AD group resulted in statistically significant correlations in five of these regions, with higher correlations in functional compared to structural topology. We computed the correlation between network topological metrics, QSM value and cortical thickness across regions at both individual and group-averaged levels, resulting in a measure we call spatial correlations. We found a decrease in the spatial correlation of QSM and the global efficiency of the structural network in AD patients at the individual level. These findings may provide insights into the complex relationships among QSM, brain atrophy, and brain connectome in AD.


Assuntos
Doença de Alzheimer , Conectoma , Humanos , Doença de Alzheimer/patologia , Conectoma/métodos , Encéfalo , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia , Ferro
9.
J Transl Med ; 22(1): 107, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279111

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. This study aimed to construct immune-related long non-coding RNAs (lncRNAs) signature and radiomics signature to probe the prognosis and immune infiltration of GBM patients. METHODS: We downloaded GBM RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) project database, and MRI data were obtained from The Cancer Imaging Archive (TCIA). Then, we conducted a cox regression analysis to establish the immune-related lncRNAs signature and radiomics signature. Afterward, we employed a gene set enrichment analysis (GSEA) to explore the biological processes and pathways. Besides, we used CIBERSORT to estimate the abundance of tumor-infiltrating immune cells (TIICs). Furthermore, we investigated the relationship between the immune-related lncRNAs signature, radiomics signature and immune checkpoint genes. Finally, we constructed a multifactors prognostic model and compared it with the clinical prognostic model. RESULTS: We identified four immune-related lncRNAs and two radiomics features, which show the ability to stratify patients into high-risk and low-risk groups with significantly different survival rates. The risk score curves and Kaplan-Meier curves confirmed that the immune-related lncRNAs signature and radiomics signature were a novel independent prognostic factor in GBM patients. The GSEA suggested that the immune-related lncRNAs signature were involved in L1 cell adhesion molecular (L1CAM) interactions and the radiomics signature were involved signaling by Robo receptors. Besides, the two signatures was associated with the infiltration of immune cells. Furthermore, they were linked with the expression of critical immune genes and could predict immunotherapy's clinical response. Finally, the area under the curve (AUC) (0.890,0.887) and C-index (0.737,0.817) of the multifactors prognostic model were greater than those of the clinical prognostic model in both the training and validation sets, indicated significantly improved discrimination. CONCLUSIONS: We identified the immune-related lncRNAs signature and tradiomics signature that can predict the outcomes, immune cell infiltration, and immunotherapy response in patients with GBM.


Assuntos
Glioblastoma , RNA Longo não Codificante , Adulto , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , RNA Longo não Codificante/genética , Radiômica , Prognóstico , Área Sob a Curva , Microambiente Tumoral/genética
10.
Hum Brain Mapp ; 45(1): e26566, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224535

RESUMO

Both plasma biomarkers and brain network topology have shown great potential in the early diagnosis of Alzheimer's disease (AD). However, the specific associations between plasma AD biomarkers, structural network topology, and cognition across the AD continuum have yet to be fully elucidated. This retrospective study evaluated participants from the Sino Longitudinal Study of Cognitive Decline cohort between September 2009 and October 2022 with available blood samples or 3.0-T MRI brain scans. Plasma biomarker levels were measured using the Single Molecule Array platform, including ß-amyloid (Aß), phosphorylated tau181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL). The topological structure of brain white matter was assessed using network efficiency. Trend analyses were carried out to evaluate the alterations of the plasma markers and network efficiency with AD progression. Correlation and mediation analyses were conducted to further explore the relationships among plasma markers, network efficiency, and cognitive performance across the AD continuum. Among the plasma markers, GFAP emerged as the most sensitive marker (linear trend: t = 11.164, p = 3.59 × 10-24 ; quadratic trend: t = 7.708, p = 2.25 × 10-13 ; adjusted R2 = 0.475), followed by NfL (linear trend: t = 6.542, p = 2.9 × 10-10 ; quadratic trend: t = 3.896, p = 1.22 × 10-4 ; adjusted R2 = 0.330), p-tau181 (linear trend: t = 8.452, p = 1.61 × 10-15 ; quadratic trend: t = 6.316, p = 1.05 × 10-9 ; adjusted R2 = 0.346) and Aß42/Aß40 (linear trend: t = -3.257, p = 1.27 × 10-3 ; quadratic trend: t = -1.662, p = 9.76 × 10-2 ; adjusted R2 = 0.101). Local efficiency decreased in brain regions across the frontal and temporal cortex and striatum. The principal component of local efficiency within these regions was correlated with GFAP (Pearson's R = -0.61, p = 6.3 × 10-7 ), NfL (R = -0.57, p = 6.4 × 10-6 ), and p-tau181 (R = -0.48, p = 2.0 × 10-4 ). Moreover, network efficiency mediated the relationship between general cognition and GFAP (ab = -0.224, 95% confidence interval [CI] = [-0.417 to -0.029], p = .0196 for MMSE; ab = -0.198, 95% CI = [-0.42 to -0.003], p = .0438 for MOCA) or NfL (ab = -0.224, 95% CI = [-0.417 to -0.029], p = .0196 for MMSE; ab = -0.198, 95% CI = [-0.42 to -0.003], p = .0438 for MOCA). Our findings suggest that network efficiency mediates the association between plasma biomarkers, specifically GFAP and NfL, and cognitive performance in the context of AD progression, thus highlighting the potential utility of network-plasma approaches for early detection, monitoring, and intervention strategies in the management of AD.


Assuntos
Doença de Alzheimer , Conectoma , Substância Branca , Humanos , Doença de Alzheimer/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Estudos Retrospectivos , Peptídeos beta-Amiloides , Biomarcadores , Proteínas tau
11.
Brain Res Bull ; 206: 110846, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104672

RESUMO

OBJECTIVE: Few studies have applied deep learning to the discriminative analysis of schizophrenia (SZ) patients using the fusional features of multimodal MRI data. Here, we proposed an integrated model combining a 3D convolutional neural network (CNN) with a 2D CNN to classify SZ patients. METHOD: Structural MRI (sMRI) and resting-state functional MRI (rs-fMRI) data were acquired for 140 SZ patients and 205 normal controls. We computed structural connectivity (SC) from the sMRI data as well as functional connectivity (FC), amplitude of low-frequency fluctuation (ALFF), and regional homogeneity (ReHo) from the rs-fMRI data. The 3D images of T1, ReHo, and ALFF were used as the inputs for the 3D CNN model, while the SC and FC matrices were used as the inputs for the 2D CNN model. Moreover, we added squeeze and excitation blocks (SE-blocks) to each layer of the integrated model and used a support vector machine (SVM) to replace the softmax classifier. RESULTS: The integrated model proposed in this study, using the fusional features of the T1 images, and the matrices of FC, showed the best performance. The use of the SE-blocks and SVM classifiers significantly improved the performance of the integrated model, in which the accuracy, sensitivity, specificity, area under the curve, and F1-score were 89.86%, 86.21%, 92.50%, 89.35%, and 87.72%, respectively. CONCLUSIONS: Our findings indicated that an integrated model combining 3D CNN with 2D CNN is a promising method to improve the classification performance of SZ patients and has potential for the clinical diagnosis of psychiatric diseases.


Assuntos
Conectoma , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Máquina de Vetores de Suporte
12.
Artigo em Inglês | MEDLINE | ID: mdl-38082801

RESUMO

Accurate segmentation of gastric tumors from computed tomography (CT) images provides useful image information for guiding the diagnosis and treatment of gastric cancer. Researchers typically collect datasets from multiple medical centers to increase sample size and representation, but this raises the issue of data heterogeneity. To this end, we propose a new cross-center 3D tumor segmentation method named unsupervised scale-aware and boundary-aware domain adaptive network (USBDAN), which includes a new 3D neural network that efficiently bridges an Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale features from the CT images with anisotropic resolution, and a scale-aware and boundary-aware domain alignment (SaBaDA) module for adaptively aligning multi-scale features between two domains and enhancing tumor boundary drawing based on location-related information drawn from each sample across all domains. We evaluate the proposed method on an in-house CT image dataset collected from four medical centers. Our results demonstrate that the proposed method outperforms several state-of-the-art methods.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagem , Anisotropia , Conscientização , Fontes de Energia Elétrica , Hospitais
13.
Front Med (Lausanne) ; 10: 1271687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098850

RESUMO

Objective: To compare the performance of radiomics-based machine learning survival models in predicting the prognosis of glioblastoma multiforme (GBM) patients. Methods: 131 GBM patients were included in our study. The traditional Cox proportional-hazards (CoxPH) model and four machine learning models (SurvivalTree, Random survival forest (RSF), DeepSurv, DeepHit) were constructed, and the performance of the five models was evaluated using the C-index. Results: After the screening, 1792 radiomics features were obtained. Seven radiomics features with the strongest relationship with prognosis were obtained following the application of the least absolute shrinkage and selection operator (LASSO) regression. The CoxPH model demonstrated that age (HR = 1.576, p = 0.037), Karnofsky performance status (KPS) score (HR = 1.890, p = 0.006), radiomics risk score (HR = 3.497, p = 0.001), and radiomics risk level (HR = 1.572, p = 0.043) were associated with poorer prognosis. The DeepSurv model performed the best among the five models, obtaining C-index of 0.882 and 0.732 for the training and test set, respectively. The performances of the other four models were lower: CoxPH (0.663 training set / 0.635 test set), SurvivalTree (0.702/0.655), RSF (0.735/0.667), DeepHit (0.608/0.560). Conclusion: This study confirmed the superior performance of deep learning algorithms based on radiomics relative to the traditional method in predicting the overall survival of GBM patients; specifically, the DeepSurv model showed the best predictive ability.

14.
Nat Commun ; 14(1): 6921, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903816

RESUMO

Ca2+ signal-generation through inter-membrane junctional coupling between endoplasmic reticulum (ER) STIM proteins and plasma membrane (PM) Orai channels, remains a vital but undefined mechanism. We identify two unusual overlapping Phe-His aromatic pairs within the STIM1 apical helix, one of which (F394-H398) mediates important control over Orai1-STIM1 coupling. In resting STIM1, this locus is deeply clamped within the folded STIM1-CC1 helices, likely near to the ER surface. The clamped environment in holo-STIM1 is critical-positive charge replacing Phe-394 constitutively unclamps STIM1, mimicking store-depletion, negative charge irreversibly locks the clamped-state. In store-activated, unclamped STIM1, Phe-394 mediates binding to the Orai1 channel, but His-398 is indispensable for transducing STIM1-binding into Orai1 channel-gating, and is spatially aligned with Phe-394 in the exposed Sα2 helical apex. Thus, the Phe-His locus traverses between ER and PM surfaces and is decisive in the two critical STIM1 functions-unclamping to activate STIM1, and conformational-coupling to gate the Orai1 channel.


Assuntos
Sinalização do Cálcio , Cálcio , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Sinalização do Cálcio/fisiologia
15.
Neuroimage ; 282: 120381, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734476

RESUMO

OBJECTIVE: The objective of this study was to evaluate the whole-brain pattern of oxygen extraction fraction (OEF), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2) perturbation in Alzheimer's disease (AD) and investigate the relationship between regional cerebral oxygen metabolism and global cognition. METHODS: Twenty-six AD patients and 25 age-matched healthy controls (HC) were prospectively recruited in this study. Mini-Mental State Examination (MMSE) was used to evaluate cognitive status. We applied the QQ-CCTV algorithm which combines quantitative susceptibility mapping and quantitative blood oxygen level-dependent models (QQ) for OEF calculation. CBF map was computed from arterial spin labeling and CMRO2 was generated based on Fick's principle. Whole-brain and regional OEF, CBF, and CMRO2 analyses were performed. The associations between these measures in substructures of deep brain gray matter and MMSE scores were assessed. RESULTS: Whole brain voxel-wise analysis showed that CBF and CMRO2 values significantly decreased in AD predominantly in the bilateral angular gyrus, precuneus gyrus and parieto-temporal regions. Regional analysis showed that CBF value decreased in the bilateral caudal hippocampus and left rostral hippocampus and CMRO2 value decreased in left caudal and rostral hippocampus in AD patients. Considering all subjects in the AD and HC groups combined, the mean CBF and CMRO2 values in the bilateral hippocampus positively correlated with the MMSE score. CONCLUSION: CMRO2 mapping with the QQ-CCTV method - which is readily available in MR systems for clinical practice - can be a potential biomarker for AD. In addition, CMRO2 in the hippocampus may be a useful tool for monitoring cognitive impairment.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Oxigênio , Testes de Função Respiratória , Consumo de Oxigênio/fisiologia , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética
16.
Quant Imaging Med Surg ; 13(7): 4676-4686, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37456292

RESUMO

Background: The most common cause of lower motor neuron facial palsy is Bell's palsy (BP). BP results in partial or complete inability to automatically move the facial muscles on the affected side and, in some cases, to close the eyelids, which can cause permanent eye damage. This study investigated changes in brain function and connectivity abnormalities in patients with BP. Methods: This study included 46 patients with unilateral BP and 34 healthy controls (HCs). Resting-state brain functional magnetic resonance imaging (fMRI) images were acquired, and Toronto Facial Grading System (TFGS) scores were obtained for all participants. The fractional amplitude of low-frequency fluctuation (fALFF) was estimated, and the relationship between the TFGS and fALFF was determined using correlation analysis for brain regions with changes in fALFF in those with BP versus HCs. Brain regions associated with TFGS were used as seeds for further functional connectivity (FC) analysis; relationships between FC values of abnormal areas and TFGS scores were also analyzed. Results: Activation of the right precuneus, right angular gyrus, left supramarginal gyrus, and left middle occipital gyrus was significantly decreased in the BP group. fALFF was significantly higher in the right thalamus, vermis, and cerebellum of the BP group compared with that in the HC group (P<0.05). The FC between the left middle occipital gyrus and right angular gyrus, left precuneus, and right middle frontal gyrus increased sharply, but decreased in the left angular gyrus, left posterior cingulate gyrus, left middle frontal gyrus, inferior cerebellum, and left middle temporal gyrus. Furthermore, the fALFF in the left middle occipital gyrus was negatively correlated with TFGS score (R=0.144; P=0.008). Conclusions: The pathogenesis of BP is closely related to functional reorganization of the cerebral cortex. Patients with BP have altered fALFF activity in cortical regions associated with facial motion feedback monitoring.

17.
Eur J Radiol Open ; 10: 100495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396489

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.

19.
Front Neurosci ; 17: 1152161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207180

RESUMO

Introduction: Meige syndrome (MS) is an adult-onset segmental dystonia disease, mainly manifested as blepharospasm and involuntary movement caused by dystonic dysfunction of the oromandibular muscles. The changes of brain activity, perfusion and neurovascular coupling in patients with Meige syndrome are hitherto unknown. Methods: Twenty-five MS patients and thirty age- and sex-matched healthy controls (HC) were prospectively recruited in this study. All the participants underwent resting-state arterial spin labeling and blood oxygen level-dependent examinations on a 3.0 T MR scanner. The measurement of neurovascular coupling was calculated using cerebral blood flow (CBF)-functional connectivity strength (FCS) correlations across the voxels of whole gray matter. Also, voxel-wised analyses of CBF, FCS, and CBF/FCS ratio images between MS and HC were conducted. Additionally, CBF and FCS values were compared between these two groups in selected motion-related brain regions. Results: MS patients showed increased whole gray matter CBF-FCS coupling relative to HC (t = 2.262, p = 0.028). In addition, MS patients showed significantly increased CBF value in middle frontal gyrus and bilateral precentral gyrus. Conclusion: The abnormal elevated neurovascular coupling of MS may indicate a compensated blood perfusion in motor-related brain regions and reorganized the balance between neuronal activity and brain blood supply. Our results provide a new insight into the neural mechanism underlying MS from the perspective of neurovascular coupling and cerebral perfusion.

20.
Cell Calcium ; 113: 102755, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196487

RESUMO

Genetic code expansion technology has been widely applied to control protein activity and biological systems by taking advantage of an amber stop codon suppressor tRNA and orthogonal aminoacyl-tRNA synthetase pair. With this chemical biology approach, Maltan et al. incorporated photocrosslinking unnatural amino acids (UAAs) into the transmembrane domains of ORAI1 to enable UV light-inducible calcium influx across the plasma membrane, mechanistic interrogation of the calcium release-activated calcium (CRAC) channel at the single amino acid level, and remote control of downstream calcium-modulated signaling in mammalian cells.


Assuntos
Cálcio , Código Genético , Animais , Cálcio/metabolismo , Aminoácidos/metabolismo , Membrana Celular/metabolismo , Sinalização do Cálcio , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA