Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Environ Sci (China) ; 147: 200-216, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003040

RESUMO

Microplastics (MPs) are ubiquitous in the environment, continuously undergo aging processes and release toxic chemical substances. Understanding the environmental behaviors of MPs is critical to accurately evaluate their long-term ecological risk. Generalized two-dimensional correlation spectroscopy (2D-COS) is a powerful tool for MPs studies, which can dig more comprehensive information hiding in the conventional one-dimensional spectra, such as infrared (IR) and Raman spectra. The recent applications of 2D-COS in analyzing the behaviors and fates of MPs in the environment, including their aging processes, and interactions with natural organic matter (NOM) or other chemical substances, were summarized systematically. The main requirements and limitations of current approaches for exploring these processes are discussed, and the corresponding strategies to address these limitations and drawbacks are proposed as well. Finally, new trends of 2D-COS are prospected for analyzing the properties and behaviors of MPs in both natural and artificial environmental processes.


Assuntos
Monitoramento Ambiental , Microplásticos , Microplásticos/análise , Monitoramento Ambiental/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Poluentes Químicos da Água/análise
2.
Int Orthop ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969821

RESUMO

PURPOSE: This study aimed to assess the clinical effectiveness and safety of percutaneous endoscopic interlaminar discectomy (PEID) in the management of high-grade migrated Lumbar disc herniation (LDH). METHODS: A total of 328 patients who underwent PEID for high-grade migrated LDH between May 2020 and January 2023 in our hospital were selected. Patients were categorized into high-grade migrated group and low-grade migrated group according to preoperative MRI findings. The preoperative and postoperative evaluations of clinical outcomes, such as Visual Analogue Scale (VAS) for lower backs and legs, Oswestry Disability Index (ODI), and modified MacNab criteria for surgical success, were compared between groups. RESULTS: No statistically significant differences were found in hospitalization time, surgery time, intraoperative hemorrhage, number of intraoperative fluoroscopies, or incision length between the two groups. The lower back and leg VAS scores and ODI exhibited a statistically significant decrease in both groups across all postoperative time intervals. However, the difference between the two groups was not statistically significant. Postoperative nerve root stimulation symptoms were reported in two and three cases in the high-grade migrated group and low-grade migrated group, respectively. One patient in the high-grade migrated group underwent reoperation due to re-herniation at the same segment. There was no significant difference in the rate of excellent-good cases between the two groups, with an overall rate of 94.7%. CONCLUSION: In treating high-grade migrated disc herniation, PEID offers advantages such as reduced trauma, small incision, quicker recovery and satisfactory clinical safety and efficacy.

3.
Glycoconj J ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046578

RESUMO

Pertussis vaccines have been very effective in controlling whooping-cough epidemics but are ineffective in controlling circulation in older children and adults, thus facilitating the onset of future outbreaks. Antibodies against the lipopolysaccharide could reduce the carriage of the bacteria, its circulation, and transmission. The oligosaccharide fragments from the lipopolysaccharide may become a potential complement to existing vaccines in the form of protein glycoconjugates. An important step in the development of this type of vaccine is defining the minimal oligosaccharide epitope recognized by B. pertussis anti-lipopolysaccharide antibodies. This paper describes the complete synthesis of oligosaccharides containing two to five monosaccharide units corresponding to the pentasaccharide at the nonreducing end of the lipooligosaccharide and their recognition by mice and rabbit antibodies elicited against whole-cell B. pertussis. For the first time, we report that the terminal disaccharide, α-D-GlcNAcp-(1 → 4)-(2,3-di-NAc)-D-ManAp acid is the minimal structure recognized by antibodies induced by B. pertussis.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124550, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823240

RESUMO

Near-infrared organic fluorescent probes have great need in biological sciences and medicine but most of them are still largely unable to meet demand. In this work, a delicate multipurpose organic fluorescent probe (DPPM-TPA) with aggregation-induced emission performances is designed and prepared by facile method to reflect fluorescence labeling, two-photon imaging, and long-term fluorescent tracking. Specifically, DPPM-TPA NPs was constructed from 4-(diphenylamino)phenylboronic acid and DPPM-Br by classical Suzuki coupling reaction and then coated with F127. Such nanoprobe possessed high stability in diverse medium under ambient temperatures, low cytotoxicity, and brilliant fluorescence performance. More importantly, DPPM-TPA NPs showed excellent two-photon imaging and extraordinary long-term fluorescence tracing capacity to malignant tumor, and it can last up to 9 days. These results indicated that DPPM-TPA NPs is expected to serve as a fluorescent probe for photodiagnostic and providing a new idea for the development of long-term fluorescent tracker.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Humanos , Animais , Neoplasias , Camundongos , Espectrometria de Fluorescência , Nanopartículas/química , Linhagem Celular Tumoral , Ácidos Borônicos/química
5.
Adv Mater ; 36(29): e2402016, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733109

RESUMO

One of the greenest and promising ways to solve the problem of freshwater crisis is surface solar steam generation from seawater. A great number of photothermal materials with multi-component and multi-layered delicate yet complex structures often suffer from either low evaporation rate or high energy loss. Here, this work presents a single component foam evaporator with steam generation rate of up to 4.32 kg m-2 h-1 under 1 sun irradiation. The evaporator is constructed from an aniline oligomer as a single light-absorbing component, covalent linked with polyethylene glycol to form a monolithic polymer foam. Floating on the seawater, the foam has absorbance of 99.5% over the entire solar spectral range and low thermal conductivity (0.0077 W K-1m-1) that effectively retains heat in the material and at the interface. After 3 months of continuous outdoor natural sunlight irradiation, the evaporator maintains a stable and durable evaporation rate. Moreover, the materials have good mechanical properties (7.48 MPa young's modulus and 57.38% elongation at break) and excellent chemical resistance in 10 common organic solvents and aqueous solutions of pH = 1 to 14. This study provides a new system and strategy for desalination, steam power generation, treatment of polluted water and sewage, etc.

6.
BMC Plant Biol ; 24(1): 441, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778301

RESUMO

BACKGROUND: Goji (Lycium barbarum L.) is a perennial deciduous shrub widely distributed in arid and semiarid regions of Northwest China. It is highly valued for its medicinal and functional properties. Most goji varieties are naturally self-incompatible, posing challenges in breeding and cultivation. Self-incompatibility is a complex genetic trait, with ongoing debates regarding the number of self-incompatible loci. To date, no genetic mappings has been conducted for S loci or other loci related to self-incompatibility in goji. RESULTS: We used genome resequencing to create a high-resolution map for detecting de novo single-nucleotide polymorphisms (SNP) in goji. We focused on 229 F1 individuals from self-compatible '13-19' and self-incompatible 'new 9' varieties. Subsequently, we conducted a quantitative trait locus (QTL) analysis on traits associated with self-compatibility in goji berries. The genetic map consisted of 249,327 SNPs distributed across 12 linkage groups (LGs), spanning a total distance of 1243.74 cM, with an average interval of 0.002 cM. Phenotypic data related to self-incompatibility, such as average fruit weight, fruit rate, compatibility index, and comparable compatibility index after self-pollination and geitonogamy, were collected for the years 2021-2022, as well as for an extra year representing the mean data from 2021 to 2022 (2021/22). A total of 43 significant QTL, corresponding to multiple traits were identified, accounting for more than 11% of the observed phenotypic variation. Notably, a specific QTL on chromosome 2 consistently appeared across different years, irrespective of the relationship between self-pollination and geitonogamy. Within the localization interval, 1180 genes were annotated, including Lba02g01102 (annotated as an S-RNase gene), which showed pistil-specific expression. Cloning of S-RNase genes revealed that the parents had two different S-RNase alleles, namely S1S11 and S2S8. S-genotype identification of the F1 population indicated segregation of the four S-alleles from the parents in the offspring, with the type of S-RNase gene significantly associated with self-compatibility. CONCLUSIONS: In summary, our study provides valuable insights into the genetic mechanism underlying self-compatibility in goji berries. This highlights the importance of further positional cloning investigations and emphasizes the importance of integration of marker-assisted selection in goji breeding programs.


Assuntos
Mapeamento Cromossômico , Frutas , Lycium , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Lycium/genética , Lycium/fisiologia , Frutas/genética , Frutas/fisiologia , Autoincompatibilidade em Angiospermas/genética , Fenótipo , China
7.
Huan Jing Ke Xue ; 45(5): 2971-2982, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629558

RESUMO

In order to study the status and sources of heavy metal pollution in Yinchuan Yellow River floodplain soils, we used inductively coupled plasma mass spectrometry (ICP-MS) to determine the presence of eight heavy metals in 92 soil samples from the Yinchuan Yellow River floodplain and used enrichment factors, geological accumulation index, and potential ecological risk index to analyze and evaluate the characteristics of heavy metal pollution in the study area. Combined correlation analysis, absolute factor analysis-multiple linear regression model (APCS-MLR), positive matrix factorization (PMF), and geostatistics were used to analyze the sources of soil heavy metals. The results showed that the content of eight heavy metals in the surface soil of the Yellow River floodplain in Yinchuan City were lower than the screening value of soil pollution risk in agricultural land; Cu and Pb contents were lower than the background value of Yinchuan City soil, and the contents of the remaining six elements were higher than the background value. The coefficients of variation of Zn and Cd were large and in the medium variation level and were influenced by anthropogenic activities. The heavy metal content varied between different land types and generally showed that wasteland > abandoned farmland > woodland > cultivated land. The average content of Cu and Pb in forest and arable soils was lower than the regional background value, whereas the rest of the heavy metals in different land types were higher than the soil background value. The analysis of enrichment factors showed that Zn and Cd were slightly enriched in the study area, and the cumulative index method and the evaluation of the potential risk of single heavy metals indicated that more than 60% of the sites in the study area were contaminated with Cd at a medium or higher potential ecological hazard. The comprehensive evaluation results of potential ecological risk showed that the overall ecological risk level of the study area was mild. From the distribution of heavy metal ecological risk comprehensive index sample points, only one point was in moderate ecological hazard, and the pollution point showed very few. Comprehensive correlation analysis, APCS-MLR model, PMF model, and geostatistical analysis results confirmed that Zn and Cd in the study area were mainly derived from human activities such as agricultural activities and transportation, and the remaining heavy metals were derived from soil parent materials. The results of this study can provide a scientific basis for the ecological protection and sustainable development of the Yellow River in Yinchuan City.

8.
Plants (Basel) ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611487

RESUMO

Self-incompatibility is a widespread genetic mechanism found in flowering plants. It plays a crucial role in preventing inbreeding and promoting outcrossing. The genes that control self-incompatibility in plants are typically determined by the S-locus female determinant factor and the S-locus male determinant factor. In the Solanaceae family, the male determinant factor is often the SLF gene. In this research, we cloned and analyzed 13 S2-LbSLF genes from the L. barbarum genome, which are located on chromosome 2 and close to the physical location of the S-locus female determinant factor S-RNase, covering a region of approximately 90.4 Mb. The amino acid sequence identity of the 13 S2-LbSLFs is 58.46%, and they all possess relatively conserved motifs and typical F-box domains, without introns. A co-linearity analysis revealed that there are no tandemly repeated genes in the S2-LbSLF genes, and that there are two pairs of co-linear genes between S2-LbSLF and the tomato, which also belongs to the Solanaceae family. A phylogenetic analysis indicates that the S2-LbSLF members can be divided into six groups, and it was found that the 13 S2-LbSLFs are clustered with the SLF genes of tobacco and Petunia inflata to varying degrees, potentially serving as pollen determinant factors regulating self-incompatibility in L. barbarum. The results for the gene expression patterns suggest that S2-LbSLF is only expressed in pollen tissue. The results of the yeast two-hybrid assay showed that the C-terminal region of S2-LbSLFs lacking the F-box domain can interact with S-RNase. This study provides theoretical data for further investigation into the functions of S2-LbSLF members, particularly for the identification of pollen determinant factors regulating self-incompatibility in L. barbarum.

9.
Biomolecules ; 14(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38672455

RESUMO

In the challenging tumor microenvironment (TME), tumors coexist with diverse stromal cell types. During tumor progression and metastasis, a reciprocal interaction occurs between cancer cells and their environment. These interactions involve ongoing and evolving paracrine and proximal signaling. Intrinsic signal transduction in tumors drives processes such as malignant transformation, epithelial-mesenchymal transition, immune evasion, and tumor cell metastasis. In addition, cancer cells embedded in the tumor microenvironment undergo metabolic reprogramming. Their metabolites, serving as signaling molecules, engage in metabolic communication with diverse matrix components. These metabolites act as direct regulators of carcinogenic pathways, thereby activating signaling cascades that contribute to cancer progression. Hence, gaining insights into the intrinsic signal transduction of tumors and the signaling communication between tumor cells and various matrix components within the tumor microenvironment may reveal novel therapeutic targets. In this review, we initially examine the development of the tumor microenvironment. Subsequently, we delineate the oncogenic signaling pathways within tumor cells and elucidate the reciprocal communication between these pathways and the tumor microenvironment. Finally, we give an overview of the effect of signal transduction within the tumor microenvironment on tumor metabolism and tumor immunity.


Assuntos
Neoplasias , Transdução de Sinais , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Transição Epitelial-Mesenquimal
10.
Front Cell Infect Microbiol ; 14: 1356804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500507

RESUMO

Objective: This study aimed to assess the diagnostic value of metagenomic next-generation sequencing (mNGS) across synovial fluid, prosthetic sonicate fluid, and periprosthetic tissues among patients with periprosthetic joint infection (PJI), intending to optimize specimen selection for mNGS in these patients. Methods: This prospective study involved 61 patients undergoing revision arthroplasty between September 2021 and September 2022 at the First Affiliated Hospital of Zhengzhou University. Among them, 43 cases were diagnosed as PJI, and 18 as aseptic loosening (AL) based on the American Musculoskeletal Infection Society (MSIS) criteria. Preoperative or intraoperative synovial fluid, periprosthetic tissues, and prosthetic sonicate fluid were collected, each divided into two portions for mNGS and culture. Comparative analyses were conducted between the microbiological results and diagnostic efficacy derived from mNGS and culture tests. Furthermore, the variability in mNGS diagnostic efficacy for PJI across different specimen types was assessed. Results: The sensitivity and specificity of mNGS diagnosis was 93% and 94.4% for all types of PJI specimens; the sensitivity and specificity of culture diagnosis was 72.1% and 100%, respectively. The diagnostic sensitivity of mNGS was significantly higher than that of culture (X2 = 6.541, P=0.011), with no statistically significant difference in specificity (X2 = 1.029, P=0.310). The sensitivity of the synovial fluid was 83.7% and the specificity was 94.4%; the sensitivity of the prosthetic sonicate fluid was 90.7% and the specificity was 94.4%; and the sensitivity of the periprosthetic tissue was 81.4% and the specificity was 100%. Notably, the mNGS of prosthetic sonicate fluid displayed a superior pathogen detection rate compared to other specimen types. Conclusion: mNGS can function as a precise diagnostic tool for identifying pathogens in PJI patients using three types of specimens. Due to its superior ability in pathogen identification, prosthetic sonicate fluid can replace synovial fluid and periprosthetic tissue as the optimal sample choice for mNGS.


Assuntos
Artrite Infecciosa , Infecções Relacionadas à Prótese , Humanos , Estudos Prospectivos , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/microbiologia , Artrite Infecciosa/diagnóstico , Sensibilidade e Especificidade , Sequenciamento de Nucleotídeos em Larga Escala
11.
Bioresour Technol ; 393: 130028, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37977494

RESUMO

Nano zero-valent iron (NZVI) is commonly used in industrial wastewater treatment. However, its long-term impact mechanisms of metabolization in anaerobic systems are not well understood. This study investigated the effects of long-term and continuous addition of NZVI on methanogenic activity, microbial community, and transcription activity. The results demonstrated that low levels of NZVI (1000 mg/L) induced inhibition of methanogenesis after 80 days, while high levels of NZVI (5000 mg/L) immediately led to a sharp decrease of cumulative methane production and chemical oxygen demand removal, which arrived at a steady state (14.4 % of control and 17 %) after 30 days. NZVI adversely affected cell viability, adenosine triphosphate production, and fatty acid evolution of cell membranes played a crucial role in resisting chronic NZVI toxicity. Moreover, high NZVI levels hindered the transcription of key enzymes CoM and mcrA, while low NZVI levels maintained its high CoM and mcrA activity, but down-regulated the transcription of cdh and hdr. Besides, amino-utilizing bacteria was reduced under the high NZVI concentration, while low NZVI changed dominant genus with potential protein hydrolysis function from Candidatus Cloacamonas to Sedimentibacter. These results provide a guideline for proper NZVI utilization in wastewater treatment.


Assuntos
Microbiota , Esgotos , Esgotos/microbiologia , Anaerobiose , Ferro/química , Metano/metabolismo , Bactérias/metabolismo
13.
Int J Gen Med ; 16: 2999-3012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465552

RESUMO

Background: The specific molecular mechanistic link between atherosclerotic plaques and ischemic stroke (IS) is not clear. The aim of this study is to explore the potential molecular relationship between atherosclerotic plaques and IS. Methods: All data were downloaded from the Gene Expression Omnibus (GEO) database. Key hub differentially expressed mRNAs (DEmRNAs) related to atherosclerotic plaques and IS were identified by differential expression analysis and least absolute shrinkage and selection operator (LASSO) analysis. Subsequently, a diagnostic model was established based on the expression of key hub DEmRNAs and logistic regression. In order to understand the molecular mechanism of key hub DEmRNAs, the transcription factor (TF) regulatory network and mRNA-miRNA-lncRNA regulatory network were also constructed. In addition, functional enrichment analysis and single-sample Gene Set Enrichment Analysis (ssGSEA) analysis were also performed. Results: Four key hub DEmRNAs (ADCY3, CLDN7, PPM1B and RRAS2) were identified by differential expression analysis and LASSO analysis. Moreover, the diagnostic model based on four key hub DEmRNAs has excellent diagnostic accuracy. We also found that Type 1 T helper cell may be associated with IS caused by atherosclerosis based on ssGSEA analysis. In the mRNA-miRNA-lncRNA regulatory network, we found that multiple signaling axes such as RRAS2-hsa-miR-3150b-3p-ILF3-AS1, PPM1B-hsa-miR-541-5p-LINC00294, CLDN7-hsa-miR-184-LINC00467 and ADCY3-hsa-miR-488-3p-URB1-AS1 may play an important role in the progression of IS. In addition, some signaling pathways, including chemokine signaling pathway, MAPK signaling pathway and cAMP signaling pathway, may be involved in regulating IS. Conclusion: The identified key molecules, signaling pathways and immune cells may help to provide a theoretical basis for exploring the relationship between atherosclerotic plaque and the progression of IS.

14.
Mol Cancer Res ; 21(8): 825-835, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071129

RESUMO

Cancer cells frequently alter their metabolism to support biogenesis and proliferation and survive specific metabolic stressors. The glucose-associated pentose phosphate pathway (PPP) is crucial for cancer cell proliferation. In particular, 6-phosphogluconate dehydrogenase (6PGD), the second dehydrogenase in the PPP, catalyzes the decarboxylation of 6-phosphogluconate into ribulose 5-phosphate (Ru5P). However, the mechanisms controlling 6PGD expression in cancer cells remain unclear. Herein, we show that TAp73 increases Ru5P and NADPH production through 6PGD activation to counteract reactive oxygen species and protects cells from apoptosis. Moreover, 6PGD overexpression rescues the proliferation and tumorigenic ability of TAp73-deficient cells. These findings further establish the critical role of TAp73 on glucose metabolism regulation, demonstrating that TAp73 can activate 6PGD expression to support oncogenic cell growth. IMPLICATIONS: By transcriptional upregulation of 6PGD, TAp73 promotes the generation of Ru5P and NADPH, and enhances tumor cell proliferation.


Assuntos
Neoplasias , Fosfogluconato Desidrogenase , Humanos , Fosfogluconato Desidrogenase/genética , Fosfogluconato Desidrogenase/metabolismo , NADP/metabolismo , Neoplasias/patologia , Proliferação de Células , Espécies Reativas de Oxigênio/metabolismo , Via de Pentose Fosfato
15.
Small ; 19(21): e2204778, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36802107

RESUMO

Photosensitizers (PSs) play a key role in the photodynamic therapy (PDT) of tumors. However, commonly used PSs are prone to intrinsic fluorescence aggregation-caused quenching and photobleaching; this drawback severely limits the clinical application of PDT, necessitating new phototheranostic agents. Herein, a multifunctional theranostic nanoplatform (named TTCBTA NP) is designed and constructed to achieve fluorescence monitoring, lysosome-specific targeting, and image-guided PDT. TTCBTA with a twisted conformation and D-A structure is encapsulated in amphiphilic Pluronic F127 to form nanoparticles (NPs) in ultrapure water. The NPs exhibit biocompatibility, high stability, strong near-infrared emission, and desirable reactive oxygen species (ROSs) production capacity. The TTCBTA NPs also show high-efficiency photo-damage, negligible dark toxicity, excellent fluorescent tracing, and high accumulation in lysosome for tumor cells. Furthermore, TTCBTA NPs are used to obtain fluorescence images with good resolution of MCF-7 tumors in xenografted BALB/c nude mice. Crucially, TTCBTA NPs present a strong tumor ablation ability and image-guided PDT effect by generating abundant ROSs upon laser irradiation. These results demonstrate that the TTCBTA NP theranostic nanoplatform may enable highly efficient near-infrared fluorescence image-guided PDT.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fotoquimioterapia/métodos , Medicina de Precisão , Fluorescência , Camundongos Nus , Fármacos Fotossensibilizantes/química , Neoplasias/terapia , Organelas
16.
Environ Sci Pollut Res Int ; 30(17): 49026-49037, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36763271

RESUMO

High concentrations of ammonium, nitrite, and nitrate always induce inhibition in anaerobic wastewater treatment. Due to the complexity and vulnerability of the microbial community (especially methanogens) in anaerobic sludge, little is understood about its underlying microbial mechanism under such inhibition. In this study, the shifts of microbial communities in anaerobic sludge under increasing levels of nitrite, nitrate, and ammonium ions were compared. Results show that although half maximal inhibitory concentrations (methanogenesis) were different for nitrite, nitrate, and ammonium ions with EC50 values of 12, 30, and 3000 mg N/L, respectively, bacteria genera Kosmotoga and Brooklawnia dominated in all of the three high-stress inhibitory systems. Network analysis and redundancy analysis (RDA) of the microbial community showed the treatments with nitrate and nitrite ions decreased the modularity of anaerobic microorganisms. RDA showed that specific methanogenic activity was positively related to coenzyme F420 under nitrite inhibition (rp = 0.833, p < 0.05) and closely correlated with viability under nitrate inhibition. Gram-positive and nonmotile Brooklawnia genus showed a negative correlation with physiological characteristics in the ammonia treatments, suggesting its high resistance to ammonia.


Assuntos
Compostos de Amônio , Microbiota , Nitritos , Nitratos , Esgotos/microbiologia , Amônia , Anaerobiose , Compostos de Amônio/farmacologia , Bactérias , Oxirredução , Reatores Biológicos/microbiologia , Metano
17.
Infect Drug Resist ; 15: 6343-6355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337930

RESUMO

Purpose: Early diagnosis of refractory Mycoplasma pneumoniae pneumonia (RMPP) is challenging because of the lack of practical diagnostic imaging tools. Lung ultrasound (LUS) is an emerging tool for diagnosing childhood pneumonia. Hence, we evaluated the role of a nomogram combining LUS findings, clinical features, and laboratory indices in the early prediction of RMPP in children. Patients and Methods: We retrospectively analyzed 225 children with Mycoplasma pneumoniae pneumonia (MPP) admitted to our hospital between Dec 2018 and Aug 2021. Logistic regression analysis incorporated LUS findings and clinical predictors into the nomogram. Ninety patients hospitalized from Sep 2021 to Dec 2021 were used for external validation of the prediction model. Receiver operating characteristics (ROC) and calibration curves were used to evaluate the performance of the nomogram in the early diagnosis of RMPP. Results: Ultimately, Consolidation size /BSA (odds ratio (OR) 1.015, 95% confidence interval (CI) 1.536-2.446), Pleural Effusion (OR 3.551, 95% CI 1.921-15.600), LDH (OR 1.044, 95% CI 1.006-1. 021) and CRP (OR 3.293, 95% CI 1.019-1.098) were independent risk factors for the development of RMPP. The prediction model was represented visually as a nomogram. The area under the ROC curve for the predictive nomogram was 0.955 (95% CI 0.919-0.978) in the training cohort and 0.916 (95% CI 0.838-0.964) in the validation cohort. The calibration curve is close to the diagonal. Conclusion: This is the first-time lung ultrasound was added to the predicted nomogram, which can more comprehensively assess the condition and more accurately predict the occurrence of RMPP early. Therefore, this nomogram can be widely used in the early diagnosis of RMPP, especially in primary care hospitals.

18.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430964

RESUMO

Electrochemical CO2 reduction (CO2RR) to produce high value-added chemicals or fuels is a promising technology to address the greenhouse effect and energy challenges. Formate is a desirable product of CO2RR with great economic value. Here, nitrogen-doped bismuth nanosheets (N-BiNSs) were prepared by a facile one-step method. The N-BiNSs were used as efficient electrocatalysts for CO2RR with selective formate production. The N-BiNSs exhibited a high formate Faradic efficiency (FEformate) of 95.25% at -0.95 V (vs. RHE) with a stable current density of 33.63 mA cm-2 in 0.5 M KHCO3. Moreover, the N-BiNSs for CO2RR yielded a large current density (300 mA cm-2) for formate production in a flow-cell measurement, achieving the commercial requirement. The FEformate of 90% can maintain stability for 14 h of electrolysis. Nitrogen doping could induce charge transfer from the N atom to the Bi atom, thus modulating the electronic structure of N-Bi nanosheets. DFT results demonstrated the N-BiNSs reduced the adsorption energy of the *OCHO intermediate and promoted the mass transfer of charges, thereby improving the CO2RR with high FEformate. This study provides a valuable strategy to enhance the catalytic performance of bismuth-based catalysts for CO2RR by using a nitrogen-doping strategy.


Assuntos
Bismuto , Dióxido de Carbono , Nitrogênio , Formiatos
19.
Front Chem ; 10: 993893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092670

RESUMO

Taking plant metabolites as material to develop new biological fungicides is still an important mission for pesticide development, and the preliminary study confirmed that Allium mongolicum showed a certain inhibitory effect on plant pathogens. In this study, the antifungal activity of extracts of A. mongolicum was studied and the compounds were isolated, purified, and identified by HPLC, NMR, and ESI-MS. The methanol extract of A. mongolicum exhibited certain inhibitory activity against almost all nine tested pathogens at concentration of 0.5 mg/ml. Sixteen compounds were isolated and purified from the extract, which were identified as nine flavonoids, six phenolic acids, and an amino acid. Among them, cinnamic acid derivatives 1, 2, and 3 and flavonoids 7, 8, 9, and 13 were separated in A. mongolicum for the first time.

20.
Stat Med ; 41(25): 5134-5149, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36005293

RESUMO

With advances in cancer treatments and improved patient survival, more patients may go through multiple lines of treatment. It is of clinical importance to choose a sequence of effective treatments (eg, lines of treatment) for individual patients with the goal of optimizing their long-term clinical outcome (eg, survival). Several important issues arise in cancer studies. First, cancer clinical trials are usually conducted by each line of treatment. For a treatment sequence, we may have first line and second line treatment data from two different studies. Second, there is typically a treatment initiation period varying from patient to patient between progression of disease and the start of the second line treatment due to administrative reasons. Additionally, the choice of the second line treatment for patients with progression of disease may depend on their characteristics. We address all these issues and develop semiparametric methods under the potential outcome framework for the estimation of the overall survival probability for a treatment sequence and for comparing different treatment sequences. We establish the large sample properties of the proposed inferential procedures. Simulation studies and an application to a colorectal clinical trial are provided.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA