Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sci Total Environ ; 951: 175660, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39168341

RESUMO

This study analyzed the dissolved organic matter (DOM) released by adsorbent during wastewater treatment. It was found that the adsorption method resulted in an organic removal efficiency of over 97 % for coal-to-olefin (CTO) wastewater, with the lowest value of 15.7 mg/L. The Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) detected 4111 DOM in the wastewater, 4052 remaining DOM after first-stage anthracite (ANC) adsorption, and 1013 after second-stage macroporous adsorption resin (MAR). The removal degree of lipids in wastewater was the highest, followed by aliphatic/amino-acid/mini-peptides and lignin. During the adsorption process, the proportion of halogenated compounds (HCs) declined from 59.86 % to 38.63 % and 21.67 %. Additionally, freshly produced 2035 and 311 DOMs were found in the adsorption effluent of ANC and MAR, respectively, with HCs accounting for 34.71 % and 67.96 %. Upon flowing ultra-pure water through ANC and MAR, the effluent dissolved organic carbon (DOC) ranges were 1.118-3.574 mg/L and 1.014-2.557 mg/L, respectively. There were 159 and 131 species of DOM detected, respectively, with HCs content of 59.06 % and 45.02 %. Comparative experiments revealed the complex components of the wastewater promoting the release of organic matter on the adsorbent surface that further reacted to generate organic matter. However, fewer substances were released by the adsorbent.

2.
J Transl Med ; 22(1): 723, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103875

RESUMO

BACKGROUND: Inadequate nerve regeneration and an inhibitory local microenvironment are major obstacles to the repair of spinal cord injury (SCI). The activation and differentiation fate regulation of endogenous neural stem cells (NSCs) represent one of the most promising repair approaches. Metformin has been extensively studied for its antioxidative, anti-inflammatory, anti-aging, and autophagy-regulating properties in central nervous system diseases. However, the effects of metformin on endogenous NSCs remains to be elucidated. METHODS: The proliferation and differentiation abilities of NSCs were evaluated using CCK-8 assay, EdU/Ki67 staining and immunofluorescence staining. Changes in the expression of key proteins related to ferroptosis in NSCs were detected using Western Blot and immunofluorescence staining. The levels of reactive oxygen species, glutathione and tissue iron were measured using corresponding assay kits. Changes in mitochondrial morphology and membrane potential were observed using transmission electron microscopy and JC-1 fluorescence probe. Locomotor function recovery after SCI in rats was assessed through BBB score, LSS score, CatWalk gait analysis, and electrophysiological testing. The expression of the AMPK pathway was examined using Western Blot. RESULTS: Metformin promoted the proliferation and neuronal differentiation of NSCs both in vitro and in vivo. Furthermore, a ferroptosis model of NSCs using erastin treatment was established in vitro, and metformin treatment could reverse the changes in the expression of key ferroptosis-related proteins, increase glutathione synthesis, reduce reactive oxygen species production and improve mitochondrial membrane potential and morphology. Moreover, metformin administration improved locomotor function recovery and histological outcomes following SCI in rats. Notably, all the above beneficial effects of metformin were completely abolished upon addition of compound C, a specific inhibitor of AMP-activated protein kinase (AMPK). CONCLUSION: Metformin, driven by canonical AMPK-dependent regulation, promotes proliferation and neuronal differentiation of endogenous NSCs while inhibiting ferroptosis, thereby facilitating recovery of locomotor function following SCI. Our study further elucidates the protective mechanism of metformin in SCI, providing new mechanistic insights for its candidacy as a therapeutic agent for SCI.


Assuntos
Proteínas Quinases Ativadas por AMP , Diferenciação Celular , Proliferação de Células , Ferroptose , Metformina , Células-Tronco Neurais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Metformina/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Animais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos
3.
Neurochem Res ; 49(8): 2120-2130, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38819695

RESUMO

Spinal cord injury (SCI) is a severe neurological condition that involves a lengthy pathological process. This process leads to the upregulation of chondroitin sulfate proteoglycans (CSPGs) by reactive glia, which impedes repair and regeneration in the spinal cord. The role of the CSPG-specific receptor protein tyrosine phosphatase-sigma (PTP-σ) in post-SCI remains largely unexplored. Exosomes have great potential in the diagnosis, prognosis, and treatment of SCI due to their ability to easily cross the blood‒brain barrier. Schwann cell-derived exosomes (SCDEs) promote functional recovery in mice post-SCI by decreasing CSPG deposition. However, the mechanism by which SCDEs decrease CSPGs after SCI remains unknown. Herein, we observed elevated levels of PTP-σ and increased CSPG deposition during glial scar formation after SCI in vivo. After SCDEs were injected into SCI mice, CSPG deposition decreased in scar tissue at the injury site, the expression of PTP-σ increased during axonal growth around the injury site, and motor function subsequently recovered. Additionally, we demonstrated that the use of both Rho/ROCK inhibitors and SCDEs inhibited the reparative effects of SCDEs on scar tissue after SCI. In conclusion, our study revealed that treatment with SCDEs targeting the Rho/ROCK signaling pathway reduced PTP-σ activation in the CSPG post-SCI, which inhibited scar tissue formation.


Assuntos
Axônios , Proteoglicanas de Sulfatos de Condroitina , Exossomos , Células de Schwann , Traumatismos da Medula Espinal , Quinases Associadas a rho , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Células de Schwann/metabolismo , Exossomos/metabolismo , Quinases Associadas a rho/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Axônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Feminino , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
4.
World Neurosurg ; 186: e95-e105, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508381

RESUMO

BACKGROUND: This study aimed to conduct a bibliometric analysis of the literature on hydrogel therapy for spinal cord injury to visualize the research status, identify hotspots, and explore the development trends in this field. METHODS: Web of science Core Collection database was searched for relevant studies published between January 1991 and December 2023. Data such as journal title, author information, institutional affiliation, country, citation, and keywords were extracted. Bibliometrix, CiteSpace, and VOSviewer were used to perform bibliometric analysis of the retrieved data. RESULTS: A total of 1099 articles pertaining to hydrogel therapy for spinal cord injury were retrieved, revealing an upward trajectory in both annual publication volume and cumulative publication volume. Biomaterials emerged as the journal with the highest number of publications and the most rapid cumulative publication growth, contributing 84 articles. Among authors, Shoichet MS stood out with the highest number of publications and citations, totaling 66 articles. The University of Toronto led in institutional contributions with 65 publications, while China dominated in country-specific publications, accounting for 374 articles. However, to foster significant academic achievements, it is imperative for diverse authors, institutions, and countries to enhance collaboration. Current research in this field concentrates on scaffold architecture, nerve growth factor, the fibrotic microenvironment, and guidance channels. Simultaneously, upcoming research directions prioritize 3D bioprinting, injectable hydrogel, inflammation, and nanoparticles within the realm of hydrogel therapy for spinal cord injuries. CONCLUSIONS: In summary, this study provided a comprehensive analysis of the current research status and frontiers of hydrogel therapy for spinal cord injury. The findings provide a foundation for future research and clinical translation efforts of hydrogel therapy in this field.


Assuntos
Bibliometria , Hidrogéis , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/tratamento farmacológico , Hidrogéis/uso terapêutico
5.
Heliyon ; 10(3): e25145, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322941

RESUMO

Spinal cord injury (SCI) occurs as a result of traumatic events that damage the spinal cord, leading to motor, sensory, or autonomic function impairment. Sarsasapogenin (SA), a natural steroidal compound, has been reported to have various pharmacological applications, including the treatment of inflammation, diabetic nephropathy, and neuroprotection. However, the therapeutic efficacy and underlying mechanisms of SA in the context of SCI are still unclear. This research aimed to investigate the therapeutic effects and mechanisms of SA against SCI by integrating network pharmacology analysis and experimental verification. Network pharmacology results suggested that SA may effectively treat SCI by targeting key targets such as TNF, RELA, JUN, MAPK14, and MAPK8. The underlying mechanism of this treatment may involve the MAPK (JNK) signaling pathway and inflammation-related signaling pathways such as TNF and Toll-like receptor signaling pathways. These findings highlight the therapeutic potential of SA in SCI treatment and provide valuable insights into its molecular mechanisms of action. In vivo experiments confirmed the reparative effect of SA on SCI in rats and suggested that SA could repair SCI by modulating the immune microenvironment. In vitro experiments further investigated how SA regulates the immune microenvironment by inhibiting the MAPK/NF-kB pathways. Overall, this study successfully utilized a combination of network pharmacology and experimental verification to establish that SA can regulate the immune microenvironment via the MAPK/NF-kB signaling pathway, ultimately facilitating functional recovery from SCI. Furthermore, these findings emphasize the potential of natural compounds from traditional Chinese medicine as a viable therapy for SCI treatment.

6.
ChemSusChem ; 17(10): e202301352, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38226954

RESUMO

Plastics have revolutionized our lives; however, the exponential growth of their usage has led to a global crisis. More sustainable strategies are needed to address this dilemma and transform the plastics economy from a linearity to a circular model. Herein, we systematically summarize the recent progress in renewable energy-driven plastic conversion strategies, including photocatalysis, electrocatalysis, and their integration. By introducing the significant works, the design principles, mechanisms, and system regulations, we decipher and compare the various aspects of plastic conversion. These approaches show high reactivity and selectivity under environmentally benign conditions and provide alternative reaction pathways for plastic conversion. Plastic upcycling as a chemical feedstock can yield value-added chemicals and fuels, contributing to the establishment of a sustainable and circular economy. Additionally, several innovations in reaction engineering and system designs are presented. Finally, the challenges and perspectives of sustainable energy-driven plastic conversion technologies are comprehensively discussed.

7.
Behav Brain Res ; 459: 114765, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-37992973

RESUMO

In preclinical studies of spinal cord injury (SCI), behavioral assessments are crucial for evaluating treatment effectiveness. Commonly used methods include Basso, Beattie, Bresnahan (BBB) score and the Louisville swim scale (LSS), relying on subjective observations. The CatWalk automated gait analysis system is also widely used in SCI studies, providing extensive gait parameters from footprints. However, these parameters are often used independently or combined simply without utilizing the vast amount of data provided by CatWalk. Therefore, it is necessary to develop a novel approach encompassing multiple CatWalk parameters for a comprehensive and objective assessment of locomotor function. In this work, we screened 208 CatWalk XT gait parameters and identified 38 suitable for assessing hindlimb motor function recovery in a rat thoracic contusion SCI model. Exploratory factor analysis was used to reveal structural relationships among these parameters. Weighted scores for Coordination effectively differentiated hindlimb motor function levels, termed as the Coordinated Function Index (CFI). CFI showed high reliability, exhibiting high correlations with BBB scores, LSS, and T2WI lesion area. Finally, we simplified CFI based on factor loadings and correlation analysis, obtaining a streamlined version with reliable assessment efficacy. In conclusion, we developed a systematic assessment indicator utilizing multiple CatWalk parameters to objectively evaluate hindlimb motor function recovery in rats after thoracic contusion SCI.


Assuntos
Contusões , Traumatismos da Medula Espinal , Ratos , Animais , Reprodutibilidade dos Testes , Marcha , Membro Posterior , Recuperação de Função Fisiológica , Medula Espinal/patologia , Modelos Animais de Doenças
8.
Acta Biochim Biophys Sin (Shanghai) ; 55(11): 1718-1729, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37814815

RESUMO

As a commonly used physical intervention, electrical stimulation (ES) has been demonstrated to be effective in the treatment of central nervous system disorders. Currently, researchers are studying the effects of electrical stimulation on individual neurons and neural networks, which are dependent on factors such as stimulation intensity, duration, location, and neuronal properties. However, the exact mechanism of action of electrical stimulation remains unclear. In some cases, repeated or prolonged electrical stimulation can lead to changes in the morphology or function of the neuron. In this study, immunofluorescence staining and Sholl analysis are used to assess changes in the neurite number and axon length to determine the optimal pattern and stimulation parameters of ES for neurons. Neuronal death and plasticity are detected by TUNEL staining and microelectrode array assays, respectively. mRNA sequencing and bioinformatics analysis are applied to predict the key targets of the action of ES on neurons, and the identified targets are validated by western blot analysis and qRT-PCR. The effects of alternating current stimulation (ACS) on neurons are more significant than those of direct current stimulation (DCS), and the optimal parameters are 3 µA and 20 min. ACS stimulation significantly increases the number of neurites, the length of axons and the spontaneous electrical activity of neurons, significantly elevates the expression of growth-associated protein-43 (GAP-43) without significant changes in the expression of neurotrophic factors. Furthermore, application of PI3K/AKT-specific inhibitors significantly abolishes the beneficial effects of ACS on neurons, confirming that the PI3K/AKT pathway is an important potential signaling pathway in the action of ACS.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Crescimento Neuronal/fisiologia , Células Cultivadas
9.
J Environ Manage ; 345: 118791, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683379

RESUMO

Methanol-to-olefin (MTO) is a typical new coal chemical industry example. Due to the large volume of generated wastewater, complex composition including catalysts, aromatics and various oxygen-containing compounds, and serious environmental hazard, wastewater recycling is critical for sustainable industrial development and ecological protection. Herein, a swirl regenerating micro-channel separation (SRMS) technology was proposed to integrate deep filtration and hydrocyclone-enhanced regeneration. A small-scale experimental investigation was first conducted to verify the feasibility of the MTO wastewater treatment. A pilot SRMS device with a treatment capacity of 20 m3/h was constructed, and the device's continuous operation effect and stability were comprehensively evaluated. The separation performance of the SRMS device at different solution pH values and the impact of the hydrocyclone-enhanced regeneration of separation media were discussed in detail. At low solution pH values (<7), the SRMS device exhibits an average separation efficiency of 92.0% for fine particulate matter in wastewater, and the median particle size, d50, decreases from 1.55 to 0.6 µm. As the solution pH increases, the repulsive energy barrier for the medium-contaminant and contaminant-contaminant increases, inhibiting the deposition behavior of particulate pollutants. In addition, hydrocyclone desorbs contaminants deposited on the separation media and the average contaminant residual rate decreases from 3.3 to 0.2 wt%. We propose an industrial application for treating and reusing MTO wastewater (200 m3/h) using the SRMS technology based on the experimental results. The costs of the wastewater treatment process are as low as 0.25 CNY/m3, and the wastewater reuse rate is over 97% without chemical consumption. This work can provide an environmentally friendly and economically sustainable approach to the source management of MTO wastewater.


Assuntos
Metanol , Águas Residuárias , Alcenos , Carvão Mineral , Poeira
10.
Environ Sci Pollut Res Int ; 30(36): 86047-86059, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37400698

RESUMO

Ore resources in the mining process form a large number of unmanageable tailings, mostly inhalable fine mineral particles, into the environment will cause serious pollution, and recycling is a precious resource. The cyclone classification provides the possibility for the recovery and exploitation of fine particles, but the recovery and utilization rate of conventional cyclone separation is seriously low, and the performance urgently should be optimized. In the present study, a new type of volute feed was proposed to strengthen the classification and recovery process of fine mineral particles. Combined with numerical simulation and experimental research, the effects of various structural parameters and operating parameters on the flow field distribution, particle motion, and classification performance were systematically examined. The obtained results reveal that the new volute feed structure can effectively reduce the internal turbulence and improve the flow field stability and particle classification efficiency. Compared with the traditional hydrocyclone, the classification efficiency of fine particles with new feed structure increases by 10-18%. Increasing underflow diameter and feed pressure and reducing overflow diameter and feed concentration are also beneficial to lessening classification particle size and enhancing classification performance. The currently achieved outcomes can provide valuable guidelines for further development of novel hydrocyclones.


Assuntos
Tempestades Ciclônicas , Poluição Ambiental , Tamanho da Partícula , Reciclagem/métodos
11.
Eur Spine J ; 32(6): 2029-2041, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37067600

RESUMO

OBJECTIVE: This study aims to evaluate the efficacy and safety of spinal cord stimulation (SCS) compared to conventional medical management (CMM) for patients diagnosed with chronic pain. Furthermore, the study seeks to compare the utilization of analgesics, as well as the long-term outcomes in terms of quality of life and functional capacity. DATA SOURCES: We systematically searched Cochrane Library, Web of Science, PubMed, and EMBASE for randomized controlled trials from inception up to February 2022. REVIEW METHODS: Inclusion and exclusion criteria were set according to the PICOS criteria. We searched for studies in which SCS was compared with CMM alone for chronic pain. Two reviewers independently identified eligible studies and extracted data. Risk of bias assessments were performed according to Cochrane review criteria and Interventional Pain Management Techniques-quality Appraisal of Reliability and Risk of Bias Assessment (IPM-QRB) criteria. RESULTS: The present meta-analysis comprised eight studies and included a total of 893 patients. Our findings demonstrate that spinal cord stimulation (SCS) in combination with conventional medical management (CMM) is associated with a significant reduction in visual analogue scale (VAS) pain intensity (P = 0.0005) and decreased scores on the McGill Pain Questionnaire (MPQ) (P < 0.0001). Moreover, SCS plus CMM was found to improve patients' quality of life, as evidenced by improvements in SF-36 scores (P < 0.00001), EQ-5D utility index (P = 0.008), and Oswestry Disability Index (ODI) (P < 0.00001). Based on the results of four high-quality randomized controlled trials (RCTs), the level of evidence supporting the efficacy of SCS for the treatment of painful neuropathy is graded as level I to II. In contrast, there is currently only low-level evidence to support the use of high-frequency stimulation and other chronic pain conditions, which can be attributed to a lack of sufficient randomized controlled trials. LIMITATIONS: The principal limitation of our study is the significant heterogeneity observed among the cohorts investigated. The primary source of this heterogeneity is the fact that spinal cord stimulation is indicated for the treatment of multiple chronic pain conditions. Moreover, variations in the stimulation parameters, differences among manufacturers, and the specific surgical implantation settings contribute to the increased heterogeneity observed in our analyses. To address this issue, we conducted a subgroup analysis based on specific situations and performed evidence synthesis to mitigate the potential impact of heterogeneity. These approaches allow for a more precise interpretation of the results and a more accurate evaluation of the quality of the included studies. CONCLUSIONS: SCS is an effective treatment to relieve the pain level of chronic pain, decrease analgesic usage, and increase long-term quality of life and functional capacity.


Assuntos
Dor Crônica , Doenças do Sistema Nervoso Periférico , Estimulação da Medula Espinal , Humanos , Dor Crônica/terapia , Estimulação da Medula Espinal/métodos , Resultado do Tratamento , Manejo da Dor/métodos , Analgésicos , Doença Crônica , Medula Espinal
12.
Chemosphere ; 311(Pt 1): 136812, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36243079

RESUMO

Oil-water separation with high efficiency and low energy consumption is a tremendous challenge in the green treatment of oily wastewater. In this paper, a novel filtration method with combined granular media for collaborative removal emulsified oil and suspended solids (SS) was proposed, followed by the exploration of demulsification feasibility and oil removal mechanism. The effect of the operation and structural parameters of the filter bed on oil separation performance was thoroughly investigated, and its feasibility for raw oily wastewater treatment was also explored. A remarkable demulsification performance was observed with the combined granular media filter, and a balance of separation efficiency and pressure drop in the emulsified oily wastewater filtration was also achieved subsequently. Effective oil droplet capture and coalescence were observed with a high speed camera system, and pore clogging could be avoided in combined media. The optimal parameters of the combined media filter (CMF) were concluded to be a combined media ratio of 1:1, a superficial velocity of 0.20 m min-1, and a bed porosity of 58.1%. The average oil and suspended solids concentrations in raw oily wastewater was decreased to 8.4 mg/L and 23.3 mg/L during the pilot-scale operation, which indicated that the novel filter composed of combined media had better performance in collaboratively removing oil and SS, even in the period of fluctuating influent parameters. It is believed that a novel and efficient oil removal method, especially including of emulsified oil removal was provided, which also shows great potential and value for the green treatment of industrial oily wastewater.


Assuntos
Águas Residuárias , Purificação da Água , Águas Residuárias/química , Molhabilidade , Purificação da Água/métodos , Óleos/química , Filtração
13.
Carbohydr Polym ; 295: 119869, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35989012

RESUMO

Thermoplastic starch is a good candidate for preparing biobased plastics. However, certain deficiencies in the ingredient, such as its poor mechanical strength and lack of antibacterial activity, need to be strengthened. In this work, a new method of producing TPS via extrusion and injection at a large scale was explored using tannin and glycerol simultaneously. The effect of the tannin content on the performance of TPS was investigated. The results showed that the synergistic effect of a small amount of tannin (2.5-7.5 wt%) and glycerol increased the tensile strength and maintained a stable elongation at break, and tannin aggregation occurred in TPS at higher tannin contents, which corresponded to increased tensile and flexural strengths. 15T-TPS has optimal mechanical performance with maximal relative crystallinity. The introduced tannin in TPS effectively enhanced the thermal stability but slightly reduced the biodegradability in soil and endowed TPS with antibacterial activity. Therefore, TPS containing tannins has the potential to be used in biomedical, food packaging and agricultural areas.


Assuntos
Anti-Infecciosos , Amido , Antibacterianos/farmacologia , Glicerol/química , Amido/química , Taninos
14.
J Environ Manage ; 311: 114841, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35278919

RESUMO

Methanol-to-olefin (MTO) is an important non-petroleum chemical process for the preparation of light olefins. However, the MTO process consumes copious amounts of water and produces large amounts of untreated effluent. Therefore, the realization of efficient wastewater treatment and recycling is key to the green low-carbon development of MTO. Here, a cooperative process combining swirl regenerating micro-channel separation (SRMS) and combined fibrous coalescence (CFC) technologies was proposed to separate high contents of oil and suspended matter in MTO wastewater. Using a pilot device with a treatment capacity of 1 m3/h, the average oil content in MTO wastewater decreased from 750 mg/L to <30 mg/L, while the average content of suspended matter decreased from 108 mg/L to <15 mg/L. Compared with a commercial MTO wastewater treatment process (olefin production capacity of 0.6 million tons per annum), the proposed method could reduce wastewater discharges and costs by 57% and US$ 0.23 million per annum respectively. Equipment costs and operational energy consumption were also reduced by 30% and >95% respectively. The combined process may provide the basis for the green and sustainable treatment of MTO wastewater and its recycling.

15.
Chembiochem ; 23(4): e202100551, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34904351

RESUMO

Lysine acetylation is one of the most basic molecular mechanisms to mediate protein functions in living organisms, and its abnormal regulation has been linked to many diseases. The drug development associated to this process is of great significance but severely hindered by the complex interplay of lysine acetylation and deacetylation in thousands of proteins, and we reasoned that targeting a specific protein acetylation or deacetylation event instead of the related enzymes should be a feasible solution to this issue. Toward this goal, we devised an orthogonal lysine acylation and deacylation (OKAD) system, which potentially could precisely dissect the biological consequence of an individual acetylation or deacetylation event in living cells. The system includes a genetically encoded acylated lysine (PhOAcK) that is not a substrate of endogenous deacetylases, and an evolved sirtuin (CobB2/CobB3) that displays PhOAcK deacylase activities as well as reduced deacetylase activities. We believe the strategy introduced here holds potential for future in-depth biological applications.


Assuntos
Histona Desacetilases/metabolismo , Lisina/metabolismo , Acilação , Lisina/química , Estrutura Molecular
16.
Bioresour Technol ; 320(Pt A): 124250, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33120056

RESUMO

Mono-culture and co-culture of algae (Chlorella vulgaris) and bacteria (activated sludge) on anaerobically digested swine manure (ADSM) were investigated in this research. The results showed that during the co-cultivation biomass growth was promoted (2.43 ± 0.11 g/L) compared with the algae-only culture (1.09 ± 0.03 g/L), and the aerobic bacteria growth was initially promoted, then inhibited. The SEM (Scanning Electron Microscope) observation indicated that the amount of the C. vulgaris increased while bacteria 'disappeared' over time. After 30 min settlement, 95.5% of the biomass in co-cultivation group precipitated, while only 40.4% of the biomass settled for the algae-only group was. It is believed that the presence of bacteria enhanced the settling rate through the formation of algal consortium flocs. Bacterial community diversity and composition were measured and the results indicated that the bacterial diversity dropped and the bacterial active classes changed in the co-cultivation group.


Assuntos
Chlorella vulgaris , Animais , Bactérias , Biomassa , Esterco , Esgotos , Suínos , Águas Residuárias
17.
RSC Adv ; 10(73): 44815-44823, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516245

RESUMO

Here, we report a method to improve the properties of thermoplastic starch (TPS) by surface ultraviolet (UV) cross-linking. TPS sheets were prepared by injection molding and coated with an ethanol solution of photo-initiator TPO (2,4,6-trimethyl benzoyl diphenyl phosphine oxide), then, irradiated by UV with different wavelengths for 15 min. Untreated and irradiated TPS sheets were characterized using tensile and bending tests, impact tests, dynamic mechanical thermal analysis (DMTA) and infrared spectroscopy (FTIR). FTIR spectra showed that UV irradiation can effectively trigger surface cross-linking of TPS sheets. The mechanical and dynamic mechanical properties of the TPS were improved and the optimized properties were obtained by 308 nm UV irradiation. A tensile strength of 4.1 MPa, a bending strength of 2.7 MPa, an impact strength of 96.8 kJ m-2, and the corresponding activation energy of 251.22 kJ mol-1 were obtained. The water contact angle and moisture absorption of the samples were also investigated and the 308 nm UV irradiated sheets have a contact angle of 74°. Moisture absorption rate as a function of the square root of time showed a sigmoid curve including a linear stage which conforms to Fick's second law. The samples irradiated by 308 nm UV had the lowest equilibrium moisture absorption rate M ∞ and the longest time T 0 to enter into the Fick's diffusion stage and the lowest slope K and diffusion coefficient D. All samples displayed biodegradable properties when buried in soil. This method has potential applications for agricultural mulch films, packing and medical film products.

18.
RSC Adv ; 9(30): 17266-17272, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35519852

RESUMO

A site-selective supported palladium nanoparticle catalyzed Suzuki-Miyaura cross-coupling reaction with heteroaryl esters and arylboronic acids as coupling partners was developed. This methodology provides a heterogeneous catalytic route for aryl ketone formation via C(acyl)-O bond activation of esters by successful suppression of the undesired decarbonylation phenomenon. The catalyst can be reused and shows high activity after eight cycles. The XPS analysis of the catalyst before and after the reaction suggested that the reaction might be performed via a Pd0/PdII catalytic cycle that began with Pd0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA