Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 2): 132450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772462

RESUMO

A comparative transcriptomic and metabolomic analysis of Polygonum cuspidatum leaves treated with MeJA was carried out to investigate the regulatory mechanisms of its active compounds. A total of 692 metabolites and 77,198 unigenes were obtained, including 200 differentially accumulated metabolites and 6819 differentially expressed genes. We screened potential regulatory transcription factors involved in resveratrol and flavonoids biosynthesis, and successfully identified an MYB transcription factor, PcMYB62, which could significantly decrease the resveratrol content in P. cuspidatum leaves when over-expressed. PcMYB62 could directly bind to the MBS motifs in the promoter region of stilbene synthase (PcSTS) gene and repress its expression. Besides, PcMYB62 could also repress PcSTS expression and resveratrol biosynthesis in transgenic Arabidopsis thaliana. Our results provide abundant candidate genes for further investigation, and the new finding of the inhibitory role of PcMYB62 on the resveratrol biosynthesis could also potentially be used in metabolic engineering of resveratrol in P. cuspidatum.


Assuntos
Acetatos , Ciclopentanos , Fallopia japonica , Regulação da Expressão Gênica de Plantas , Metaboloma , Oxilipinas , Proteínas de Plantas , Resveratrol , Fatores de Transcrição , Transcriptoma , Resveratrol/metabolismo , Resveratrol/farmacologia , Fallopia japonica/metabolismo , Fallopia japonica/genética , Acetatos/farmacologia , Acetatos/metabolismo , Metaboloma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Transcriptoma/efeitos dos fármacos , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Aciltransferases/genética , Aciltransferases/metabolismo , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/efeitos dos fármacos
2.
RSC Adv ; 14(7): 4543-4555, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38312726

RESUMO

Due to their high wavelength selectivity and strong anti-interference capability, solar-blind UV photodetectors hold broad and important application prospects in fields like flame detection, missile warnings, and secure communication. Research on solar-blind UV detectors for amorphous Ga2O3 is still in its early stages. The presence of intrinsic defects related to oxygen vacancies significantly affects the photodetection performance of amorphous Ga2O3 materials. This paper focuses on growing high quality amorphous Ga2O3 films on silicon substrates through atomic layer deposition. The study investigates the impact of annealing atmospheres on Ga2O3 films and designs a blind UV detector for Ga2O3. Characterization techniques including atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are used for Ga2O3 film analysis. Ga2O3 films exhibit a clear transition from amorphous to polycrystalline after annealing, accompanied by a decrease in oxygen vacancy concentration from 21.26% to 6.54%. As a result, the response time of the annealed detector reduces from 9.32 s to 0.47 s at an external bias of 10 V. This work demonstrates that an appropriate annealing process can yield high-quality Ga2O3 films, and holds potential for advancing high-performance solar blind photodetector (SBPD) development.

3.
Front Genet ; 14: 1289811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075688

RESUMO

Reynoutria japonica Houtt. is an important medical plant with a long history of thousands of years in China, however, its mitochondrial genome (mitogenome) has not been reported yet. In this work, we reported and analyzed the R. japonica mitogenome. The main results include: The R. japonica mitogenome was 302,229 bp in length and encoded 48 genes, including 27 protein-coding genes (PCGs), 3 rRNA genes, and 18 tRNA genes. Repeat sequence analysis revealed that there were 54 repeat sequences ranging from 193 bp to 1,983 bp in the R. japonica mitogenome. Relative synonymous codon usage (RSCU) analysis showed that leucine (900, 11.01%) and serine (732, 8.96%) were the two most abundant amino acids, and the codons with RSCU values showed the preference of A or T ending when greater than 1. The RNA editing sites of PCGs in the R. japonica mitogenome were characterized, and 299 RNA editing sites were found. Extensive sequences transfer between mitochondrion and chloroplast were found in R. japonica, where 11 complete plastid-derived tRNA genes stayed intact in the R. japonica mitogenome. Three genes (ccmFC, cox1, and nad1) were seen to play essential roles in the evolution through selection pressure analysis. The phylogenetic analysis showed that Fallopia multiflora was the closest species with R. japonica, in consistency with the results of chloroplast genome. Overall, the current work presents the first mitogenome of R. japonica and could contribute to the phylogenetic analysis of the family Polygonaceae.

4.
Materials (Basel) ; 16(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770153

RESUMO

Inorganic scintillators are of great significance in the fields of medical CT, high-energy physics and industrial nondestructive testing. In this work, we confirm that the Pb4Lu3F17: Re (Re = Tb, Eu, Sm, Dy, Ho) crystals are promising candidates for a new kind of scintillator. Detailed crystal structure information is obtained by the Rietveld refinement analysis. Upon X-ray irradiation, all these scintillators exhibited characteristic 4f-4f transitions. The Ce and Gd ions were verified to be useful for enhancing the scintillation intensity via introducing energy transfer processes. The integrated scintillation intensity of the Pb4Lu3F17: Tb/Ce is about 16.8% of the commercial CsI (Tl) single crystal. Our results manifested that Pb4Lu3F17: Re has potential application in X-ray detection and imaging.

5.
Opt Lett ; 48(4): 872-875, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790963

RESUMO

Recycling Pb from lead acid batteries is rather important in environmental protection, but current strategies need a high temperature or produce secondary pollution. Herein, we present a green reactant recycling method to synthesize PbI2 micro-crystals by extracting the Pb from waste lead acid batteries. Systematical characterizations indicate that the as-prepared PbI2 micro-crystals show high purity, high crystal quality with a 2H-hexagonal crystal structure, and excellent optical properties with a bandgap of 2.3 eV. Based on the recycled 2H-PbI2 micro-crystals, a symmetrically structured ITO/PbI2/ITO photodetector is fabricated. Under 10 V bias voltage, the device reveals a distinct photo-response to UV-visible light and superior performance, with a dark current of 1.06 nA, an on-off ratio of 103, a responsivity of 15.5 mA/W, and a detectivity of 4.7 × 1010 Hz1/2 W-1. In addition, the photodetector also exhibits relatively rapid response speeds of 69 ms (rise time) and 64 ms (decay time). Our study provides an innovative and green strategy for producing a UV-visible photodetector based on recycled lead acid batteries, which is significant in environmental protection and the recycling economy.

6.
Nanoscale ; 15(9): 4361-4366, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752142

RESUMO

Excitation-dependent dynamic multicolor luminescent materials show potential for promising applications in the field of anti-counterfeiting. However, for most ultraviolet (UV)-excited lanthanide-doped materials, more than two types of activators are incorporated to realize multicolors. In this study, for the first time, KLu3F10:Tb crystals were used to realize excitation-dependent multicolor emissions. The morphology was modified by tuning the surface-coated citric acid (CA) content. During hydrothermal reactions, fluorine vacancy defects are formed on the crystal surface, and carboxyl groups (-COOH) are coated on the crystal surface to maintain the charge balance. Under 254 nm UV excitation, typical Tb3+ green emissions were observed, while a strong broadband emission peaking at 442 nm appeared in addition to these Tb3+ emissions under 365 nm excitation. The energy transfer (ET) process between the defect state and Tb3+ is clarified. This work may promote the development of single-type activator-doped multicolor luminescent materials for high-level anti-counterfeiting.

7.
Materials (Basel) ; 15(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499845

RESUMO

The hot stamping technology of aluminum alloy is of great significance for realizing the light weight of the automobile body, and the proper process parameters are important conditions to obtain excellent aluminum alloy parts. In this paper, the thermal deformation behavior of 6016 aluminum alloy at a high temperature is experimentally studied to provide a theoretical basis for a finite element model. With the help of blank stamping finite element software, a numerical model of a 6016 aluminum alloy automobile windshield beam during hot stamping was established. The finite element model was verified by a forming experiment. Then, the effect of the process parameters, including blank holder force, die gap, forming temperature, friction coefficient, and stamping speed on aluminum alloy formability were investigated using Taguchi design, grey relational analysis (GRA), and analysis of variance (ANOVA). Stamping tests were arranged at temperatures between 480 and 570 °C, blank holder force between 20 and 50 kN, stamping speed between 50 and 200 mm/s, die gap between 1.05 t and 1.20 t (t is the thickness of the sheet), and friction coefficient between 0.15 and 0.60. It was found that the significant factors affecting the forming quality of the hot-stamped parts were blank holder force and stamping speed, with influence significance of 28.64% and 34.09%, respectively. The optimal parameters for hot stamping of the automobile windshield beam by the above analysis are that the die gap is 1.05 t, the blank temperature is 540 °C, the coefficient of friction is 0.15, stamping speed is 200 mm/s, and blank holder force is 50 kN. The optimized maximum thickening rate is 4.87% and the maximum thinning rate is 9.00%. The optimization method used in this paper and the results of the process parameter optimization provide reference values for the optimization of hot stamping forming.

8.
Nanomaterials (Basel) ; 12(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500879

RESUMO

In this work, the atomic level doping of Sn into Ga2O3 films was successfully deposited by using a plasma-enhanced atomic layer deposition method. Here, we systematically studied the changes in the chemical state, microstructure evolution, optical properties, energy band alignment, and electrical properties for various configurations of the Sn-doped Ga2O3 films. The results indicated that all the films have high transparency with an average transmittance of above 90% over ultraviolet and visible light wavelengths. X-ray reflectivity and spectroscopic ellipsometry measurement indicated that the Sn doping level affects the density, refractive index, and extinction coefficient. In particular, the chemical microstructure and energy band structure for the Sn-doped Ga2O3 films were analyzed and discussed in detail. With an increase in the Sn content, the ratio of Sn-O bonding increases, but by contrast, the proportion of the oxygen vacancies decreases. The reduction in the oxygen vacancy content leads to an increase in the valence band maximum, but the energy bandgap decreases from 4.73 to 4.31 eV. Moreover, with the increase in Sn content, the breakdown mode transformed the hard breakdown into the soft breakdown. The C-V characteristics proved that the Sn-doped Ga2O3 films have large permittivity. These studies offer a foundation and a systematical analysis for assisting the design and application of Ga2O3 film-based transparent devices.

9.
Genes (Basel) ; 13(11)2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36360217

RESUMO

Reynoutria japonica Houtt., a traditional medicine herb of the Polygonaceae family, has been used since ancient times in China due to its various pharmacological effects. Chloroplast genomes are conservative and play an essential role in population diversity analysis. However, there are few studies on the chloroplast genome of R. japonica. In this study, the complete chloroplast genomes of three R. japonica from different regions were performed by next-generation sequencing technology. The results revealed that the lengths of the three chloroplast genomes are between 163,371~163,372 bp, and they have a highly conserved structure with a pair of inverted repeat (IR) regions (31,121 bp), a large single-copy (LSC) region (87,571~87,572 bp), and a small single-copy (SSC) region (13,558 bp). In total, 132 genes were annotated, including 8 rRNA genes, 37 tRNA genes, and 87 protein-coding genes. The phylogenetic analysis strongly revealed that 13 populations of R. japonica form a monophyly, and Fallopia multiflora (Polygonaceae) is its closest species. The two species diverged at ~20.47 million years ago, and R. japonica in China could be further divided into two major groups based on genetic structure analysis. In addition, several potential loci with suitable polymorphism were identified as molecular markers. Our study provides important genetic resources for further development and utilization of R. japonica germplasm, as well as some new insights into the evolutionary characteristics of this medicinal plant.


Assuntos
Genoma de Cloroplastos , Filogenia , Reynoutria , RNA de Transferência/genética , Sequenciamento de Nucleotídeos em Larga Escala
10.
Dalton Trans ; 51(31): 11703-11712, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35852240

RESUMO

A series of Rb1-yKyNa3(Li3SiO4)4:Eu2+(0 ≤ y ≤ 1) phosphors were successfully synthesized through a high-temperature solid-state reaction. The introduction of K+ into the RbNa3(Li3SiO4)4:Eu2+ phosphor to partially or completely replace Rb+ allows the emission spectrum to be modulated from blue (λ = 473 nm, FWHM = 22.5 nm) to a narrow cyan band (λ = 485 nm, FWHM = 21.1 nm). As the K+ ion content increases, the space group of the phosphor evolves from I4/M to I41/A. The complete replacement of Rb+ by K+ results in the KNa3(Li3SiO4)4:Eu2+ cyan phosphor, which shows excellent thermal stability (the comprehensive emission loss is only 8% at 150 °C) and can be used to fill the cyan light gap in white LED devices. By adding the KNa3(Li3SiO4)4:Eu2+ cyan phosphor in packaging with yellow and red phosphors, the color rendering index is increased from 90.2 to 97.1 and the correlated color temperature improved to 3658 K. These results indicate that the cyan phosphor has important application value in full-spectrum white LEDs.

11.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457178

RESUMO

Being an invasive plant, Polygonum cuspidatum is highly resilient and can survive in unfavorable environments for long periods; however, its molecular mechanisms associated with such environmental resistance are largely unknown. In this study, a WRKY transcription factor (TF) gene, PcWRKY11, was identified from P. cuspidatum by analyzing methyl jasmonate (MeJA)-treated transcriptome data. It showed a high degree of homology with WRKY11 from Arabidopsis thaliana, containing a WRKY domain and a zinc finger structure and II-d WRKY characteristic domains of HARF, a calmodulin-binding domain (C-motif), and a putative nuclear localization signal (NLS) through sequence alignment and functional element mining. qPCR analysis showed that the expression of PcWRKY11 can be induced by NaCl, osmotic stress, and UV-C. In this study, we also found that overexpression of PcWRKY11 in A. thaliana could significantly increase salt tolerance. To explore its possible molecular mechanism, further investigations showed that compared with the wild type (WT), under salt stress, the transgenic plants showed a lower malondialdehyde (MDA) content, higher expression of ascorbate peroxidase (APX) and superoxide dismutase (SOD), and higher enzyme activity of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). Moreover, the transgenic plants also showed higher expression of Δ1-pyrroline-5-carboxylate synthase (AtP5CS), and higher contents of proline and soluble sugar. Taken together, these results indicate that PcWRKY11 may have a positive role in plants' adaptation to salinity conditions by reducing reactive oxygen species (ROS) levels and increasing osmosis substance synthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fallopia japonica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fallopia japonica/genética , Fallopia japonica/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Dalton Trans ; 50(47): 17792-17799, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34821887

RESUMO

Phosphor is an important part of the new generation of light-emitting diodes (LEDs), which requires high luminous intensity and high-temperature resistance. In this study, a series of excellent (Ba1-x-yCax)AlSi5O2N7:yEu2+ phosphors was developed, which were synthesized by a high-temperature solid-state reaction in a reducing atmosphere. In addition, the crystallinity and luminescence intensity of the samples could be enhanced by some amount of Ca2+ substitution. The luminescence intensity was the highest when the Eu2+ concentration reached 0.06. Furthermore, the thermal stability of the luminescence was studied in detail. The results were satisfactory, showing that the luminescence intensity of the (Ba1-xCax)AlSi5O2N7:Eu2+ phosphors exhibited unique negative-thermal-quenching characteristics both at high (273-473 K) and low (4-273 K) temperatures. And the phosphor combined with UV LED chip and red phosphor Sr2Si5N8:Eu2+ can achieve a CRI of 90.4 in white LED application which indicated the (Ba1-xCax)AlSi5O2N7:Eu2+ phosphor has potential in LED applications.

13.
J Ovarian Res ; 14(1): 138, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686190

RESUMO

BACKGROUND: Accumulating data have established that microRNAs (miRNAs) play significant regulatory roles in the carcinogenesis and progression of ovarian cancer (OC). MiR-425-5p was reported to function in various tumors. However, the roles and underlying mechanism of miR-425-5p involvement in OC development and progression are unclear. METHODS: A comprehensive strategy of data mining, computational biology, and real-time polymerase chain reaction was employed to identify the involvement of miR-425-5p in OC progression. The effect of miR-425-5p on the proliferation, migration, and invasion of OC cells was determined using Cell Counting Kit-8, wound-healing, and Matrigel invasion assays, respectively. Luciferase assay was performed to evaluate the interactions between miR-425-5p and MAGI2-AS3 or AFF4. RESULTS: miR-425-5p was significantly up-regulated in OC tissues and cells. The luciferase reporter assay revealed that miR-425-5p was negatively regulated by MAGI2-AS3. Silencing miR-425-5p inhibited the proliferation, migration, and invasion of OC cells in vitro. Bioinformatics analysis and luciferase reporter assay revealed that AFF4 was the target gene of miR-425-5p. Moreover, AFF4 expression was significantly decreased in OC and was closely related to the good prognosis of patients with OC. AFF4 overexpression inhibited the proliferation, migration, and invasion of OC cells in vitro. By contrast, silencing AFF4 promoted the proliferation, migration, and invasion of OC cells in vitro. Finally, AFF4 suppression rescued the inhibitory effect of silencing miR-425-5p on the proliferation, migration, and invasion of OC cells. CONCLUSION: To the best our knowledge, this is the first study to demonstrate that miR-425-5p overexpression in OC is negatively regulated by MAGI2-AS3. Moreover, miR-425-5p promotes the proliferation, migration, and invasion of OC cells by targeting AFF4, suggesting that miR-425-5p/AFF4 signaling pathway represented a novel therapeutic target for patients with OC.


Assuntos
MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Fatores de Elongação da Transcrição/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Invasividade Neoplásica , Neoplasias Ovarianas/patologia , Transfecção
14.
Opt Lett ; 46(4): 737-740, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577502

RESUMO

The surface plasmon resonance (SPR) of metal nanostructures is known to affect the optical properties of solid luminescent materials. Ag nanoparticles were first used to obtain a wider color gamut in rare-earth-doped phosphor-in-glass for application as color filters for white light emitting diodes. The existence of Ag nanocrystallites at nanometer scale and the independent integrity of the phosphor luminescence center in the amorphous glass environment were demonstrated. Using UV-Vis spectroscopy, the localized SPR absorption band was observed at 480 nm, and the optical properties of the nanostructures were found to be dependent on the annealing temperature. Hence, an expansion of the color gamut from 79.07% to 93.31% was realized by the coefficient effect of Nd3+ active ions and Ag nanoparticles. These results suggest that Nd3+-ion-co-doped phosphor-in-glass modified by Ag nanoparticles could be potentially applied as a novel optical material with a wide color gamut.

15.
Front Plant Sci ; 11: 517962, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193465

RESUMO

Willow (Salix), a dioecious plant, is an important ornamental tree species in the world. Salix linearistipularis, a perennial woody plant species naturally distributed on the Songnen Plain saline-alkali land in northeast China, has a high saline condition. To study the sexual differences of S. linearistipularis in salinity tolerance, the physiological and transcriptional responses to salinity were compared between female and male cuttings. Under salinity stress, the female leaves exhibited higher superoxide dismutase and peroxidase activities and photosynthetic capacity, and lower H2O2 contents than those of male leaves. Under salinity stress, sodium (Na+) accumulation in female leaves was lower than that in the male leaves. The non-invasive micro-test showed that the net Na+ efflux in the salt-treated female roots was higher than that in male roots. Physiological responses revealed that female cuttings were more tolerant than males, which may be mainly due to females having lower leaf Na+ accumulation and higher root Na+ efflux capacity than males. Transcriptional analyses showed that 108 differentially expressed salt-responsive genes were identified in both female and male roots; most of these showed sexual differences in expression patterns under salinity stress. RNA-seq combined with qPCR analysis showed that the salt-induced expression of four Na+/H+ antiporter (NHX) genes (SlNHX3, 5, 6, 7) in female roots was higher than that in male roots. Transcriptional analyses revealed that the higher Na+ efflux capacity in female roots than in male roots may be closely related to the differential expression of salt-responsive genes, especially NHX genes.

16.
Genes (Basel) ; 11(6)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630497

RESUMO

Vacuolar-type H+-ATPase (V-ATPase), a multisubunit proton pump located on the endomembrane, plays an important role in plant growth. The Arabidopsis thaliana V-ATPase d subunit (VHA-d) consists of two isoforms; AtVHA-d1 and AtVHA-d2. In this study, the function of AtVHA-d2 was investigated. Histochemical analysis revealed that the expression of AtVHA-d1 and AtVHA-d2 was generally highly overlapping in multiple tissues at different developmental stages of Arabidopsis. Subcellular localization revealed that AtVHA-d2 was mainly localized to the vacuole. AtVHA-d2 expression was significantly induced by oxidative stress. Analysis of phenotypic and H2O2 content showed that the atvha-d2 mutant was sensitive to oxidative stress. The noninvasive microtest monitoring demonstrated that the net H+ influx in the atvha-d2 roots was weaker than that in the wild-type under normal conditions. However, oxidative stress resulted in the H+ efflux in atvha-d2 roots, which was significantly different from that in the wild-type. RNA-seq combined with qPCR analysis showed that the expression of several members of the plasma membrane H+-ATPase gene (AtAHA) family in atvha-d2 was significantly different from that in the wild-type. Overall, our results indicate that AtVHA-d2 plays a role in Arabidopsis in response to oxidative stress by affecting H+ flux and AtAHA gene expression.


Assuntos
Arabidopsis/genética , Estresse Oxidativo/genética , Desenvolvimento Vegetal/genética , ATPases Vacuolares Próton-Translocadoras/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Subunidades Proteicas/genética , Vacúolos/enzimologia
17.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512879

RESUMO

Nitrogen (N) is an essential macronutrient for plant growth. Plants absorb and utilize N mainly in the form of nitrate (NO3-) or ammonium (NH4+). In this study, the nitrate transporter DsNRT3.1 (also known as the nitrate assimilation-related protein DsNAR2.1) was characterized from Dianthus spiculifolius. A quantitative PCR (qPCR) analysis showed that the DsNRT3.1 expression was induced by NO3-. Under N-starvation conditions, the transformed Arabidopsis seedlings expressing DsNRT3.1 had longer roots and a greater fresh weight than the wild type. Subcellular localization showed that DsNRT3.1 was mainly localized to the plasma membrane in Arabidopsis root hair cells. Non-invasive micro-test (NMT) monitoring showed that the root hairs of N-starved transformed Arabidopsis seedlings had a stronger NO3- and NH4+ influx than the wild-type seedlings, using with NO3- or NH4+ as the sole N source; contrastingly, transformed seedlings only had a stronger NO3- influx when NO3- and NH4+ were present simultaneously. In addition, the qPCR analysis showed that the expression of AtNRT2 genes (AtNRT2.1-2.6), and particularly of AtNRT2.5, in the transformed Arabidopsis differed from that in the wild type. Overall, our results suggest that the heterologous expression of DsNRT3.1 affects seedlings' growth by enhancing the NO3- and NH4+ uptake in N-starved Arabidopsis. This may be related to the differential expression of AtNRT2 genes.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Nitratos/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Ânions/química , Arabidopsis/classificação , Proteínas de Arabidopsis/química , Transporte Biológico , Expressão Gênica , Transportadores de Nitrato , Filogenia , Plântula/genética , Plântula/metabolismo
18.
ACS Appl Mater Interfaces ; 12(27): 30538-30547, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32539324

RESUMO

The resistive switching behavior in resistive random access memories (RRAMs) using atomic-layer-deposited Ga2O3/ZnO composite film as the dielectric was investigated. By alternatively atomic-layer-depositing Ga2O3 and ZnO with different thickness, we can accurately control the oxygen vacancy concentration. When regulating ZnO to ∼31%, the RRAMs exhibit a forming-free property as well as outstanding performance, including the ratio of a high resistance state to the low resistance state of 1000, retention time of more than 1 × 104 s, and the endurance of 100. By preparing RRAMs of different Zn concentration, we carried out a comparative study and explored the physical origin for the forming-free property as well as good performance. Finally, a unified model is proposed to account for the resistive switching and the current conduction mechanism, providing meaningful insights in the development of high-quality and forming-free RRAMs for future memory and neuromorphic applications.

19.
Nanoscale ; 12(13): 7159-7173, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32193525

RESUMO

As a well-known semiconductor that can catalyse the oxygen evolution reaction, TiO2 has been extensively investigated for its solar photoelectrochemical water properties. Unmodified TiO2 shows some issues, particularly with respect to its photoelectrochemical performance. In this paper, we present a strategy for the controlled deposition of controlled amounts of GaOxNy cocatalysts on TiO2 1D nanowires (TiO2@GaOxNy core-shell) using atomic layer deposition. We show that this modification significantly enhances the photoelectrochemical performance compared to pure TiO2 NW photoanodes. For our most active TiO2@GaOxNy core-shell nanowires with a GaOxNy thickness of 20 nm, a photocurrent density up to 1.10 mA cm-2 (at 1.23 V vs. RHE) under AM 1.5 G irradiation (100 mW cm-2) has been achieved, which is 14 times higher than that of unmodified TiO2 NWs. Furthermore, the band gap matching with TiO2 enhances the absorption of visible light over unmodified TiO2 and the facile oxygen vacancy formation after the deposition of GaOxNy also provides active sites for water activation. Density functional theory studies of model systems of GaOxNy-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaOxNy core-shell nanowires with ALD deposited GaOxNy demonstrate a good strategy for the fabrication of core-shell structures that enhance the photoelectrochemical performance of readily available photoanodes.

20.
J Colloid Interface Sci ; 568: 81-88, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32088454

RESUMO

Development of high-performance ammonia (NH3) sensor is imperative for monitoring NH3 in the living environment. In this work, to obtain a high performance NH3 gas sensor, structurally well-defined WO3@SnO2 core shell nanosheets with a controllable thickness of SnO2 shell layer have been employed as sensing materials. The prepared core shell nanosheets were used to obtain a miniaturized gas sensor based on micro-electro-mechanical system (MEMS). By tuning the thickness of SnO2 layer via atomic layer deposition, a series of WO3@SnO2 core-shell nanosheets with tunable sensing properties were realized. Particularly, the sensor base on the fabricated WO3@SnO2 nanosheets with 20-nm SnO2 shell layer demonstrated superior gas sensing performance with the highest response (1.55) and selectivity toward 15 ppm NH3 at 200 °C. This remarkable enhancement of NH3 sensing ability could be ascribed to the formation of unique WO3-SnO2 core-shell heterojunction structure. The detailed mechanism was elucidated by the heterojunction-depletion model with the help of specific band alignment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA