Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005205

RESUMO

Zaluzanin C (ZC), a sesquiterpene lactone isolated from Laurus nobilis L., has been reported to have anti-inflammatory and antioxidant effects. However, the mechanistic role of ZC in its protective effects in Kupffer cells and hepatocytes has not been elucidated. The purpose of this study was to elucidate the efficacy and mechanism of action of ZC in Kupffer cells and hepatocytes. ZC inhibited LPS-induced mitochondrial ROS (mtROS) production and subsequent mtROS-mediated NF-κB activity in Kupffer cells (KCs). ZC reduced mRNA levels of pro-inflammatory cytokines (Il1b and Tnfa) and chemokines (Ccl2, Ccl3, Ccl4, Cxcl2 and Cxcl9). Tumor necrosis factor (TNF)-α-induced hepatocyte mtROS production was inhibited by ZC. ZC was effective in alleviating mtROS-mediated mitochondrial dysfunction. ZC enhanced mitophagy and increased mRNA levels of fatty acid oxidation genes (Pparα, Cpt1, Acadm and Hadha) and mitochondrial biosynthetic factors (Pgc1α, Tfam, Nrf1 and Nrf2) in hepatocytes. ZC has proven its anti-lipid effect by improving lipid accumulation in hepatocytes by enhancing mitochondrial function to facilitate lipid metabolism. Therefore, our study suggests that ZC may be an effective compound for hepatoprotection by suppressing inflammation and lipid accumulation through regulating mtROS.


Assuntos
Hepatócitos , Células de Kupffer , Humanos , Células de Kupffer/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , Lipídeos/farmacologia , Fígado , Metabolismo dos Lipídeos
2.
Biochem Pharmacol ; 193: 114764, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34529948

RESUMO

Chronic liver disease (CLD) is considered the leading cause of global mortality. In westernized countries, increased consumption of alcohol and overeating foods with high fat/ high glucose promote progression of CLD such as alcoholic liver disease (ALD) and non-alcoholic liver disease (NAFLD). Accumulating evidence and research suggest that ubiquitin, a 75 amino acid protein, plays crucial role in the pathogenesis of CLD through dynamic post-translational modifications (PTMs) exerting diverse cellular outcomes such as protein degradation through ubiquitin-proteasome system (UPS) and autophagy, and regulation of signal transduction. In this review, we present the function of ubiquitination and latest findings on diverse mechanism of PTMs, UPS and autophagy which significantly contribute to the pathogenesis of alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cirrhosis, and HCC. Despite its high prevalence, morbidity, and mortality, there are only few FDA approved drugs that could be administered to CLD patients. The goal of this review is to present a variety of pathways and therapeutic targets involving ubiquitination in the pathogenesis of CLD. Further, this review summarizes collective views of pharmaceutical inhibition or activation of recent drugs targeting UPS and autophagy system to highlight potential targets and new approaches to treat CLD.


Assuntos
Autofagia/fisiologia , Doença Hepática Terminal/etiologia , Doença Hepática Terminal/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Doença Hepática Terminal/tratamento farmacológico , Humanos
3.
Nutrients ; 13(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807927

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is becoming one of the most common chronic liver diseases in the world. One of the features of NAFLD is hepatic fat accumulation, which further causes hepatic steatosis, fibrosis, and inflammation. Saponins, the major pharmacologically active ingredients isolated from Panax notoginseng, contain several ginsenosides, which have various pharmacological and therapeutic functions. However, the ginsenoside-specific molecular mechanism of saponins in NAFLD remains unknown. This study aimed to elucidate the effects of ginseng saponin extract and its ginsenosides on hepatic steatosis, fibrosis, and inflammation and their underlying action mechanism in NAFLD. Mice were fed a fast food diet (FFD) for 16 weeks to induce NAFLD and then treated with saponin extract (50 or 150 mg/kg) for the remaining nine weeks to determine the effects of saponin on NAFLD. Saponin extract administration significantly alleviated FFD-induced hepatic steatosis, fibrosis, and inflammation. Particularly, saponin extract, compared with conventional red ginseng, contained significantly increased amounts of ginsenosides (Rh1 (10.34-fold) and Rg2 (7.1-fold)). In vitro Rh1 and Rg2 treatments exerted an anti-steatotic effect in primary hepatocytes, an antifibrotic effect in hepatic stellate cells, and anti-inflammatory and pro-mitophagy effects in immortalized mouse Kupffer cells. Mechanistically, saponin extract alleviated lipopolysaccharide-induced NLRP3 inflammasome activation by promoting mitophagy. In conclusion, saponin extract inhibited inflammation-mediated pathological inflammasome activation in macrophages, thereby preventing NAFLD development. Thus, saponin extract administration may be an alternative method for NAFLD prevention.


Assuntos
Ginsenosídeos/farmacologia , Inflamassomos/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Panax/química , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Animais , Modelos Animais de Doenças , Fast Foods/efeitos adversos , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia
4.
Ecol Res ; 33(1): 73-86, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681687

RESUMO

Water resources support more than 60 million people in the Lower Mekong Basin (LMB) and are important for food security-especially rice production-and economic security. This study aims to quantify water yield under near- and long-term climate scenarios and assess the potential impacts on rice cultivation. The InVEST model (Integrated Valuation of Ecosystem Services and Tradeoffs) forecasted water yield, and land evaluation was used to delineate suitability classes. Pattern-downscaled climate data were specially generated for the LMB. Predicted annual water yields for 2030 and 2060, derived from a drier overall scenario in combination with medium and high greenhouse gas emissions, indicated a reduction of 9-24% from baseline (average 1986-2005) runoff. In contrast, increased seasonality and wetter rainfall scenarios increased annual runoff by 6-26%. Extreme drought decreased suitability of transplanted rice cultivation by 3%, and rice production would be reduced by 4.2 and 4%, with and without irrigation projects, relative to baseline. Greatest rice reduction was predicted for Thailand, followed by Lao PDR and Cambodia, and was stable for Vietnam. Rice production in the LMB appears sufficient to feed the LMB population in 2030, while rice production in Lao PDR and Cambodia are not expected to be sufficient for domestic consumption, largely due to steep topography and sandy soils as well as drought. Four adaptation measures to minimize climate impacts (i.e., irrigation, changing the planting calendar, new rice varieties, and alternative crops) are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA