Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4171, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519904

RESUMO

The master posttranscriptional regulator HuR promotes muscle fiber formation in cultured muscle cells. However, its impact on muscle physiology and function in vivo is still unclear. Here, we show that muscle-specific HuR knockout (muHuR-KO) mice have high exercise endurance that is associated with enhanced oxygen consumption and carbon dioxide production. muHuR-KO mice exhibit a significant increase in the proportion of oxidative type I fibers in several skeletal muscles. HuR mediates these effects by collaborating with the mRNA decay factor KSRP to destabilize the PGC-1α mRNA. The type I fiber-enriched phenotype of muHuR-KO mice protects against cancer cachexia-induced muscle loss. Therefore, our study uncovers that under normal conditions HuR modulates muscle fiber type specification by promoting the formation of glycolytic type II fibers. We also provide a proof-of-principle that HuR expression can be targeted therapeutically in skeletal muscles to combat cancer-induced muscle wasting.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Neoplasias/complicações , Animais , Linhagem Celular , Linhagem Celular Tumoral , Estudos Transversais , Proteína Semelhante a ELAV 1/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout
2.
Proc Natl Acad Sci U S A ; 116(35): 17261-17270, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31405989

RESUMO

Debilitating cancer-induced muscle wasting, a syndrome known as cachexia, is lethal. Here we report a posttranscriptional pathway involving the RNA-binding protein HuR as a key player in the onset of this syndrome. Under these conditions, HuR switches its function from a promoter of muscle fiber formation to become an inducer of muscle loss. HuR binds to the STAT3 (signal transducer and activator of transcription 3) mRNA, which encodes one of the main effectors of this condition, promoting its expression both in vitro and in vivo. While HuR does not affect the stability and the cellular movement of this transcript, HuR promotes the translation of the STAT3 mRNA by preventing miR-330 (microRNA 330)-mediated translation inhibition. To achieve this effect, HuR directly binds to a U-rich element in the STAT3 mRNA-3'untranslated region (UTR) located within the vicinity of the miR-330 seed element. Even though the binding sites of HuR and miR-330 do not overlap, the recruitment of either one of them to the STAT3-3'UTR negatively impacts the binding and the function of the other factor. Therefore, together, our data establish the competitive interplay between HuR and miR-330 as a mechanism via which muscle fibers modulate, in part, STAT3 expression to determine their fate in response to promoters of muscle wasting.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , MicroRNAs/metabolismo , Atrofia Muscular/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/metabolismo , Biossíntese de Proteínas , RNA Neoplásico/metabolismo , Fator de Transcrição STAT3/biossíntese , Regiões 3' não Traduzidas , Animais , Proteína Semelhante a ELAV 1/genética , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Atrofia Muscular/genética , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , RNA Neoplásico/genética , Fator de Transcrição STAT3/genética
3.
EMBO Mol Med ; 10(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29844217

RESUMO

Activation of AMPK has been associated with pro-atrophic signaling in muscle. However, AMPK also has anti-inflammatory effects, suggesting that in cachexia, a syndrome of inflammatory-driven muscle wasting, AMPK activation could be beneficial. Here we show that the AMPK agonist AICAR suppresses IFNγ/TNFα-induced atrophy, while the mitochondrial inhibitor metformin does not. IFNγ/TNFα impair mitochondrial oxidative respiration in myotubes and promote a metabolic shift to aerobic glycolysis, similarly to metformin. In contrast, AICAR partially restored metabolic function. The effects of AICAR were prevented by the AMPK inhibitor Compound C and were reproduced with A-769662, a specific AMPK activator. AICAR and A-769662 co-treatment was found to be synergistic, suggesting that the anti-cachectic effects of these drugs are mediated through AMPK activation. AICAR spared muscle mass in mouse models of cancer and LPS induced atrophy. Together, our findings suggest a dual function for AMPK during inflammation-driven atrophy, wherein it can play a protective role when activated exogenously early in disease progression, but may contribute to anabolic suppression and atrophy when activated later through mitochondrial dysfunction and subsequent metabolic stress.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Caquexia/prevenção & controle , Metformina/uso terapêutico , Proteínas Quinases/metabolismo , Ribonucleotídeos/uso terapêutico , Quinases Proteína-Quinases Ativadas por AMP , Aminoimidazol Carboxamida/uso terapêutico , Animais , Caquexia/etiologia , Linhagem Celular , Ativação Enzimática , Inflamação/complicações , Interferon gama/antagonistas & inibidores , Masculino , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Neoplasias Experimentais/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Quinases/efeitos dos fármacos , Choque Séptico/induzido quimicamente , Choque Séptico/complicações , Fator de Necrose Tumoral alfa/antagonistas & inibidores
4.
EMBO Mol Med ; 9(5): 622-637, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28264935

RESUMO

Cachexia is a debilitating syndrome characterized by involuntary muscle wasting that is triggered at the late stage of many cancers. While the multifactorial nature of this syndrome and the implication of cytokines such as IL-6, IFNγ, and TNFα is well established, we still do not know how various effector pathways collaborate together to trigger muscle atrophy. Here, we show that IFNγ/TNFα promotes the phosphorylation of STAT3 on Y705 residue in the cytoplasm of muscle fibers by activating JAK kinases. Unexpectedly, this effect occurs both in vitro and in vivo independently of IL-6, which is considered as one of the main triggers of STAT3-mediated muscle wasting. pY-STAT3 forms a complex with NF-κB that is rapidly imported to the nucleus where it is recruited to the promoter of the iNos gene to activate the iNOS/NO pathway, a well-known downstream effector of IFNγ/TNFα-induced muscle loss. Together, these findings show that STAT3 and NF-κB respond to the same upstream signal and cooperate to promote the expression of pro-cachectic genes, the identification of which could provide effective targets to combat this deadly syndrome.


Assuntos
Interferon gama/imunologia , Interleucina-6/imunologia , Atrofia Muscular/imunologia , NF-kappa B/imunologia , Fator de Transcrição STAT3/imunologia , Fator de Necrose Tumoral alfa/imunologia , Síndrome de Emaciação/imunologia , Animais , Linhagem Celular , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/imunologia , Músculos/patologia , Atrofia Muscular/patologia , Mapas de Interação de Proteínas , Síndrome de Emaciação/patologia
5.
PLoS One ; 9(1): e87237, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466343

RESUMO

Gene expression during muscle cell differentiation is tightly regulated at multiple levels, including translation initiation. The PI3K/mTOR signalling pathway exerts control over protein synthesis by regulating assembly of eukaryotic initiation factor (eIF) 4F, a heterotrimeric complex that stimulates recruitment of ribosomes to mRNA templates. One of the subunits of eIF4F, eIF4A, supplies essential helicase function during this phase of translation. The presence of two cellular eIF4A isoforms, eIF4AI and eIF4AII, has long thought to impart equivalent functions to eIF4F. However, recent experiments have alluded to distinct activities between them. Herein, we characterize distinct regulatory mechanisms between the eIF4A isoforms during muscle cell differentiation. We find that eIF4AI levels decrease during differentiation whereas eIF4AII levels increase during myofiber formation in a MyoD-dependent manner. This study characterizes a previously undefined mechanism for eIF4AII regulation in differentiation and highlights functional differences between eIF4AI and eIF4AII. Finally, RNAi-mediated alterations in eIF4AI and eIF4AII levels indicate that the myogenic process can tolerate short term reductions in eIF4AI or eIF4AII levels, but not both.


Assuntos
Diferenciação Celular , Fator de Iniciação 4A em Eucariotos/metabolismo , Regulação da Expressão Gênica , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Animais , Células Cultivadas , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4A em Eucariotos/genética , Imunofluorescência , Immunoblotting , Imunoprecipitação , Camundongos , Proteína MyoD/genética , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Nat Commun ; 3: 896, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22692539

RESUMO

Cachexia, or muscle-wasting syndrome, is one of the major causes of death in patients affected by diseases such as cancer, AIDS and sepsis. However, no effective anti-cachectic treatment is currently available. Here we show that a low dose of pateamine A, an inhibitor of translation initiation, prevents muscle wasting caused by the cytokines interferon γ and tumour necrosis factor α or by C26-adenocarcinoma tumours. Surprisingly, although high doses of pateamine A abrogate general translation, low doses selectively inhibit the expression of pro-cachectic factors such as inducible nitric oxide synthase. This selectivity depends on the 5'UTR of inducible nitric oxide synthase messenger RNA (mRNA) that, unlike the 5'UTR of MyoD mRNA, promotes the recruitment of inducible nitric oxide synthase mRNA to stress granules, where its translation is repressed. Collectively, our data provide a proof of principle that nontoxic doses of compounds such as pateamine A could be used as novel drugs to combat cachexia-induced muscle wasting.


Assuntos
Caquexia/fisiopatologia , Compostos de Epóxi/uso terapêutico , Macrolídeos/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Tiazóis/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Northern Blotting , Linhagem Celular , Immunoblotting , Imunoprecipitação , Hibridização In Situ , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Atrofia Muscular/metabolismo , Óxidos de Nitrogênio/metabolismo
7.
Ageing Res Rev ; 11(4): 432-41, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22687959

RESUMO

The deterioration of skeletal muscle that develops slowly with age, termed sarcopenia, often leads to disability and mortality in the elderly population. As the proportion of elderly citizens continues to increase due to the dramatic rise in life expectancy, there are rising concerns about the healthcare cost and social burden of caring for geriatric patients. Thus, there is a growing need to understand the underlying mechanisms of sarcopenic muscle loss so that more efficacious therapies may be developed. Building evidence suggests that the onset of age-related muscle loss is linked to the age-related changes in gene expression that occur during sarcopenia. In recent work, the posttranscriptional regulation of gene expression by RNA-binding proteins (RBPs) and microRNA (miRNA) involved in the turnover and translation of mRNA were shown as key players believed to be involved in the induction of muscle wasting. Furthermore, posttranscriptional regulation may also be linked to the reduced ability of muscle satellite cells to contribute to muscle mass during ageing, a key contributing factor to sarcopenic progression. Here we highlight how the activation of pathways such as the p38 MAPK and the phosphoinositide 3-kinase (PI3K) pathways alter the ability of RBPs to regulate the expression of their target mRNAs encoding proteins involved in cell cycle (p21 and p16), as well as myogenesis (Pax7, myogenin and MyoD). Further investigation into the role of RBPs and miRNA during sarcopenia may provide new insights into the development and progression of this disorder, which may lead to the development of new treatment options for elderly patients suffering from sarcopenia.


Assuntos
Atrofia Muscular/genética , Biossíntese de Proteínas/fisiologia , Processamento Pós-Transcricional do RNA/genética , Sarcopenia/genética , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Proteínas de Ligação a RNA/genética , Sarcopenia/metabolismo , Sarcopenia/fisiopatologia
8.
Aging (Albany NY) ; 3(8): 702-15, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21832306

RESUMO

Muscle atrophy-also known as muscle wasting-is a debilitating syndrome that slowly develops with age (sarcopenia) or rapidly appears at the late stages of deadly diseases such as cancer, AIDS, and sepsis (cachexia). Despite the prevalence and the drastic detrimental effects of these two syndromes, there are currently no widely used, effective treatment options for those suffering from muscle wasting. In an attempt to identify potential therapeutic targets, the molecular mechanisms of sarcopenia and cachexia have begun to be elucidated. Growing evidence suggests that inflammatory cytokines may play an important role in the pathology of both syndromes. As one of the key cytokines involved in both sarcopenic and cachectic muscle wasting, tumor necrosis factor α (TNFα) and its downstream effectors provide an enticing target for pharmacological intervention. However, to date, no drugs targeting the TNFα signaling pathway have been successful as a remedial option for the treatment of muscle wasting. Thus, there is a need to identify new effectors in this important pathway that might prove to be more efficacious targets. Inducible nitric oxide synthase (iNOS) has recently been shown to be an important mediator of TNFα-induced cachectic muscle loss, and studies suggest that it may also play a role in sarcopenia. In addition, investigations into the mechanism of iNOS-mediated muscle loss have begun to reveal potential therapeutic strategies. In this review, we will highlight the potential for targeting the iNOS/NO pathway in the treatment of muscle loss and discuss its functional relevance in sarcopenia and cachexia.


Assuntos
Envelhecimento/fisiologia , Caquexia/enzimologia , Atrofia Muscular/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Sarcopenia/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Óxido Nítrico Sintase Tipo II/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA