Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39064820

RESUMO

Selaginella tamariscina is a perennial plant that is used for diverse diseases. This study investigated whether Selaginella tamariscina has an antiviral effect against influenza A virus (IAV) infection. We used green fluorescent protein (GFP)-tagged influenza A virus (IAV) to examine the effect of Selaginella tamariscina ethanol extract (STE) on influenza viral infection. Fluorescence microscopy and flow cytometry showed that STE potently represses GFP expression by the virus, dose-dependently. STE significantly inhibited the expression of the IAV M2, NP, HA, NA, NS1, and PB2 proteins. Time-of-addition and hemagglutination inhibition assays showed that STE has an inhibitory effect on hemagglutinin and viral binding on the cells at an early infection time. In addition, STE exerted a suppressive effect on the neuraminidase activity of the H1N1 and H3N2 IAVs. Furthermore, dose-dependently, STE inhibited the cytopathic effect induced by H3N2, as well as by H1N1 IAV. Especially in the presence of 200 µg/mL STE, the cytopathic effect was completely blocked. Our findings suggest that STE has antiviral efficacy against IAV infection; thus, it could be developed as a natural IAV inhibitor.


Assuntos
Antivirais , Etanol , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Neuraminidase , Extratos Vegetais , Selaginellaceae , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Humanos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Animais , Células Madin Darby de Rim Canino , Selaginellaceae/química , Cães , Vírus da Influenza A/efeitos dos fármacos , Hemaglutininas/metabolismo , Influenza Humana/tratamento farmacológico
2.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928244

RESUMO

Obesity and metabolic syndrome alter serum lipid profiles. They also increase vulnerability to viral infections and worsen the survival rate and symptoms after infection. How serum lipids affect influenza virus proliferation is unclear. Here, we investigated the effects of lysophosphatidylcholines on influenza A virus (IAV) proliferation. IAV particles in the culture medium were titrated using extraction-free quantitative PCR, and viral RNA and protein levels were assessed using real-time PCR and Western blot, respectively. RNA sequencing data were analyzed using PCA and heatmap analysis, and pathway analysis was performed using the KEGG mapper and PathIN tools. Statistical analysis was conducted using SPSS21.0. LPC treatment of THP-1 cells significantly increased IAV proliferation and IAV RNA and protein levels, and saturated LPC was more active in IAV RNA expression than unsaturated LPC was. The functional analysis of genes affected by LPCs showed that the expression of genes involved in IAV signaling, such as suppressor of cytokine signaling 3 (SOCS3), phosphoinositide-3-kinase regulatory subunit 3 (PI3K) and AKT serine/threonine kinase 3 (AKT3), Toll-like receptor 7 (TKR7), and interferon gamma receptor 1 (IFNGR1), was changed by LPC. Altered influenza A pathways were linked with MAPK and PI3K/AKT signaling. Treatment with inhibitors of MAPK or PI3K attenuated viral gene expression changes induced by LPCs. The present study shows that LPCs stimulated virus reproduction by modifying the cellular environment to one in which viruses proliferated better. This was mediated by the MAPK, JNK, and PI3K/AKT pathways. Further animal studies are needed to confirm the link between LPCs from serum or the respiratory system and IAV proliferation.


Assuntos
Vírus da Influenza A , Lisofosfatidilcolinas , Sistema de Sinalização das MAP Quinases , Replicação Viral , Humanos , Lisofosfatidilcolinas/farmacologia , Lisofosfatidilcolinas/metabolismo , Replicação Viral/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Macrófagos/metabolismo , Macrófagos/virologia , Macrófagos/efeitos dos fármacos , Células THP-1 , Diferenciação Celular/efeitos dos fármacos , Influenza Humana/virologia , Influenza Humana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais
3.
Nutrients ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276557

RESUMO

Panax ginseng Meyer and Inula japonica Thunb. are well established in traditional medicine and are known for their therapeutic properties in managing a range of ailments such as diabetes, asthma, and cancer. Although P. ginseng and I. japonica can alleviate pulmonary fibrosis (PF), the anti-fibrosis effect on PF by the combination of two herbal medicines remains unexplored. Therefore, this study explores this combined effect. In conditions that were not cytotoxic, MRC-5 cells underwent treatment using the formula combining P. ginseng and I. japonica (ISE081), followed by stimulation with transforming growth factor (TGF)-ß1, to explore the fibroblast-to-myofibroblast transition (FMT). After harvesting the cells, mRNA levels and protein expressions associated with inflammation and FMT-related markers were determined to evaluate the antiinflammation activities and antifibrosis effect of ISE081. Additionally, the anti-migratory effects of ISE081 were validated through a wound-healing assay. ISE081 remarkably reduced the mRNA levels of interleukin (IL)-6, IL-8, α-smooth muscle actin (SMA), and TGF-ß1 in MRC-5 cells and suppressed the α-SMA and fibronectin expressions, respectively. Furthermore, ISE081 inhibited Smad2/3 phosphorylation and wound migration of MRC-5 cells. Under the same conditions, comparing those of ISE081, P. ginseng did not affect the expression of α-SMA, fibronectin, and Smad2/3 phosphorylation, whereas I. japonica significantly inhibited them but with cytotoxicity. The results indicate that the synergistic application of P. ginseng and I. japonica enhances the anti-fibrotic properties in pulmonary fibroblasts and concurrently diminishes toxicity. Therefore, ISE081 has the potential as a prevention and treatment herbal medicine for PF.


Assuntos
Inula , Panax , Fibrose Pulmonar , Humanos , Inula/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Panax/metabolismo , Fibrose , Fibrose Pulmonar/metabolismo , Fibroblastos , Fator de Crescimento Transformador beta1/metabolismo , RNA Mensageiro/metabolismo
4.
Curr Issues Mol Biol ; 45(12): 9926-9942, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38132466

RESUMO

Microglia-induced inflammatory signaling and neuronal oxidative stress are mutually reinforcing processes central to the pathogenesis of neurodegenerative diseases. Recent studies have shown that extracts of dried Pheretima aspergillum (Lumbricus) can inhibit tissue fibrosis, mitochondrial damage, and asthma. However, the effects of Lumbricus extracts on neuroinflammation and neuronal damage have not been previously studied. Therefore, to evaluate the therapeutic potential of Lumbricus extract for neurodegenerative diseases, the current study assessed the extract's anti-inflammatory and antioxidant activities in BV2 microglial cultures stimulated with lipopolysaccharide (LPS) along with its neuroprotective efficacy in mouse hippocampal HT22 cell cultures treated with excess glutamate. Lumbricus extract dose-dependently inhibited the LPS-induced production of multiple proinflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß) and reversed the upregulation of proinflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2). Lumbricus also activated the antioxidative nuclear factor erythroid 2-relayed factor 2/heme oxygenase-1 pathway and inhibited LPS-induced activation of the nuclear factor-κB/mitogen-activated protein kinases/NOD-like receptor family pyrin domain containing 3 inflammatory pathway. In addition, Lumbricus extract suppressed the glutamate-induced necrotic and apoptotic death of HT22 cells, effects associated with upregulated expression of antiapoptotic proteins, downregulation of pro-apoptotic proteins, and reduced accumulation of reactive oxygen species. Chromatography revealed that the Lumbricus extract contained uracil, hypoxanthine, uridine, xanthine, adenosine, inosine, and guanosine. Its effects against microglial activation and excitotoxic neuronal death reported herein support the therapeutic potential of Lumbricus for neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA