Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D194-D202, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37587690

RESUMO

N 6-Methyladenosine (m6A) is one of the most abundant internal chemical modifications on eukaryote mRNA and is involved in numerous essential molecular functions and biological processes. To facilitate the study of this important post-transcriptional modification, we present here m6A-Atlas v2.0, an updated version of m6A-Atlas. It was expanded to include a total of 797 091 reliable m6A sites from 13 high-resolution technologies and two single-cell m6A profiles. Additionally, three methods (exomePeaks2, MACS2 and TRESS) were used to identify >16 million m6A enrichment peaks from 2712 MeRIP-seq experiments covering 651 conditions in 42 species. Quality control results of MeRIP-seq samples were also provided to help users to select reliable peaks. We also estimated the condition-specific quantitative m6A profiles (i.e. differential methylation) under 172 experimental conditions for 19 species. Further, to provide insights into potential functional circuitry, the m6A epitranscriptomics were annotated with various genomic features, interactions with RNA-binding proteins and microRNA, potentially linked splicing events and single nucleotide polymorphisms. The collected m6A sites and their functional annotations can be freely queried and downloaded via a user-friendly graphical interface at: http://rnamd.org/m6a.


Assuntos
Bases de Dados Genéticas , Metilação de RNA , RNA Mensageiro , Transcriptoma , Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Processamento Pós-Transcricional do RNA
2.
Nucleic Acids Res ; 52(D1): D203-D212, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37811871

RESUMO

With recent progress in mapping N7-methylguanosine (m7G) RNA methylation sites, tens of thousands of experimentally validated m7G sites have been discovered in various species, shedding light on the significant role of m7G modification in regulating numerous biological processes including disease pathogenesis. An integrated resource that enables the sharing, annotation and customized analysis of m7G data will greatly facilitate m7G studies under various physiological contexts. We previously developed the m7GHub database to host mRNA m7G sites identified in the human transcriptome. Here, we present m7GHub v.2.0, an updated resource for a comprehensive collection of m7G modifications in various types of RNA across multiple species: an m7GDB database containing 430 898 putative m7G sites identified in 23 species, collected from both widely applied next-generation sequencing (NGS) and the emerging Oxford Nanopore direct RNA sequencing (ONT) techniques; an m7GDiseaseDB hosting 156 206 m7G-associated variants (involving addition or removal of an m7G site), including 3238 disease-relevant m7G-SNPs that may function through epitranscriptome disturbance; and two enhanced analysis modules to perform interactive analyses on the collections of m7G sites (m7GFinder) and functional variants (m7GSNPer). We expect that m7Ghub v.2.0 should serve as a valuable centralized resource for studying m7G modification. It is freely accessible at: www.rnamd.org/m7GHub2.


Assuntos
Bases de Dados de Ácidos Nucleicos , Sequenciamento de Nucleotídeos em Larga Escala , Processamento Pós-Transcricional do RNA , Humanos , Interpretação Estatística de Dados , Guanosina/genética
3.
Nucleic Acids Res ; 51(D1): D106-D116, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36382409

RESUMO

With advanced technologies to map RNA modifications, our understanding of them has been revolutionized, and they are seen to be far more widespread and important than previously thought. Current next-generation sequencing (NGS)-based modification profiling methods are blind to RNA modifications and thus require selective chemical treatment or antibody immunoprecipitation methods for particular modification types. They also face the problem of short read length, isoform ambiguities, biases and artifacts. Direct RNA sequencing (DRS) technologies, commercialized by Oxford Nanopore Technologies (ONT), enable the direct interrogation of any given modification present in individual transcripts and promise to address the limitations of previous NGS-based methods. Here, we present the first ONT-based database of quantitative RNA modification profiles, DirectRMDB, which includes 16 types of modification and a total of 904,712 modification sites in 25 species identified from 39 independent studies. In addition to standard functions adopted by existing databases, such as gene annotations and post-transcriptional association analysis, we provide a fresh view of RNA modifications, which enables exploration of the epitranscriptome in an isoform-specific manner. The DirectRMDB database is freely available at: http://www.rnamd.org/directRMDB/.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Processamento Pós-Transcricional do RNA , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular , Isoformas de Proteínas , RNA/genética , Análise de Sequência de RNA/métodos , Bases de Dados de Ácidos Nucleicos
4.
Nucleic Acids Res ; 51(D1): D1388-D1396, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36062570

RESUMO

Recent advances in epitranscriptomics have unveiled functional associations between RNA modifications (RMs) and multiple human diseases, but distinguishing the functional or disease-related single nucleotide variants (SNVs) from the majority of 'silent' variants remains a major challenge. We previously developed the RMDisease database for unveiling the association between genetic variants and RMs concerning human disease pathogenesis. In this work, we present RMDisease v2.0, an updated database with expanded coverage. Using deep learning models and from 873 819 experimentally validated RM sites, we identified a total of 1 366 252 RM-associated variants that may affect (add or remove an RM site) 16 different types of RNA modifications (m6A, m5C, m1A, m5U, Ψ, m6Am, m7G, A-to-I, ac4C, Am, Cm, Um, Gm, hm5C, D and f5C) in 20 organisms (human, mouse, rat, zebrafish, maize, fruit fly, yeast, fission yeast, Arabidopsis, rice, chicken, goat, sheep, pig, cow, rhesus monkey, tomato, chimpanzee, green monkey and SARS-CoV-2). Among them, 14 749 disease- and 2441 trait-associated genetic variants may function via the perturbation of epitranscriptomic markers. RMDisease v2.0 should serve as a useful resource for studying the genetic drivers of phenotypes that lie within the epitranscriptome layer circuitry, and is freely accessible at: www.rnamd.org/rmdisease2.


Assuntos
Bases de Dados Factuais , Processamento Pós-Transcricional do RNA , Animais , Humanos , Fenótipo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Epigenômica
5.
Nucleic Acids Res ; 50(D1): D196-D203, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986603

RESUMO

5-Methylcytosine (m5C) is one of the most prevalent covalent modifications on RNA. It is known to regulate a broad variety of RNA functions, including nuclear export, RNA stability and translation. Here, we present m5C-Atlas, a database for comprehensive collection and annotation of RNA 5-methylcytosine. The database contains 166 540 m5C sites in 13 species identified from 5 base-resolution epitranscriptome profiling technologies. Moreover, condition-specific methylation levels are quantified from 351 RNA bisulfite sequencing samples gathered from 22 different studies via an integrative pipeline. The database also presents several novel features, such as the evolutionary conservation of a m5C locus, its association with SNPs, and any relevance to RNA secondary structure. All m5C-atlas data are accessible through a user-friendly interface, in which the m5C epitranscriptomes can be freely explored, shared, and annotated with putative post-transcriptional mechanisms (e.g. RBP intermolecular interaction with RNA, microRNA interaction and splicing sites). Together, these resources offer unprecedented opportunities for exploring m5C epitranscriptomes. The m5C-Atlas database is freely accessible at https://www.xjtlu.edu.cn/biologicalsciences/m5c-atlas.


Assuntos
Bases de Dados Genéticas , Epigenoma/genética , Software , Transcriptoma/genética , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Humanos , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único/genética , Processamento Pós-Transcricional do RNA/genética , Análise de Sequência de RNA
6.
Nucleic Acids Res ; 49(D1): D134-D143, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32821938

RESUMO

N 6-Methyladenosine (m6A) is the most prevalent RNA modification on mRNAs and lncRNAs. It plays a pivotal role during various biological processes and disease pathogenesis. We present here a comprehensive knowledgebase, m6A-Atlas, for unraveling the m6A epitranscriptome. Compared to existing databases, m6A-Atlas features a high-confidence collection of 442 162 reliable m6A sites identified from seven base-resolution technologies and the quantitative (rather than binary) epitranscriptome profiles estimated from 1363 high-throughput sequencing samples. It also offers novel features, such as; the conservation of m6A sites among seven vertebrate species (including human, mouse and chimp), the m6A epitranscriptomes of 10 virus species (including HIV, KSHV and DENV), the putative biological functions of individual m6A sites predicted from epitranscriptome data, and the potential pathogenesis of m6A sites inferred from disease-associated genetic mutations that can directly destroy m6A directing sequence motifs. A user-friendly graphical user interface was constructed to support the query, visualization and sharing of the m6A epitranscriptomes annotated with sites specifying their interaction with post-transcriptional machinery (RBP-binding, microRNA interaction and splicing sites) and interactively display the landscape of multiple RNA modifications. These resources provide fresh opportunities for unraveling the m6A epitranscriptomes. m6A-Atlas is freely accessible at: www.xjtlu.edu.cn/biologicalsciences/atlas.


Assuntos
Adenosina/análogos & derivados , Bases de Conhecimento , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma , Adenosina/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Atlas como Assunto , Conjuntos de Dados como Assunto , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , HIV/genética , HIV/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Camundongos , MicroRNAs/metabolismo , Pan troglodytes/genética , Pan troglodytes/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Ratos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Suínos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA