Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 357: 120636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552514

RESUMO

Although aerobic composting is usually utilized in livestock manure disposal, the emission of odorous gases from compost not only induces harm to the human body and the environment, but also causes loss of nitrogen, sulfur, and other essential elements, resulting in a decline in product quality. The impact of biotrickling filter (BTF) and insertion of carbon-based microbial agent (CBMA) on compost maturation, odor emissions, and microbial population during the chicken manure composting were assessed in the current experiment. Compared with the CK group, CBMA addition accelerated the increase in pile temperature (EG group reached maximum temperature 10 days earlier than CK group), increased compost maturation (GI showed the highest increase of 41.3% on day 14 in EG group), resulted in 36.59% and 14.60% increase in NO3--N content and the total nitrogen retention preservation rate after composting. The deodorization effect of biotrickling filter was stable, and the removal rates of NH3, H2S, and TVOCs reached more than 90%, 96%, and 56%, respectively. Furthermore, microbial sequencing showed that CBMA effectively changed the microbial community in compost, protected the ammonia-oxidizing microorganisms, and strengthened the nitrification of the compost. In addition, the nitrifying and denitrifying bacteria were more active in the cooling period than they were in the thermophilic period. Moreover, the abundance of denitrification genes containing nirS, nirK, and nosZ in EG group was lower than that in CK group. Thus, a large amount of nitrogen was retained under the combined drive of BTF and CBMA during composting. This study made significant contributions to our understanding of how to compost livestock manure while reducing releases of odors and raising compost quality.


Assuntos
Inoculantes Agrícolas , Compostagem , Animais , Humanos , Esterco/microbiologia , Galinhas , Odorantes , Nitrogênio/análise , Carbono , Solo
2.
Neuroreport ; 35(4): 258-268, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38305135

RESUMO

Diabetic neuropathic pain (DNP) is a frequent complication of diabetes. Calcium/calmodulin-dependent protein kinase II α (CaMKIIα), a multi-functional serine/threonine kinase subunit, is mainly located in the surface layer of the spinal cord dorsal horn (SCDH) and the primary sensory neurons in dorsal root ganglion (DRG). Numerous studies have indicated electroacupuncture (EA) takes effect in various kinds of pain. In this research, we explored whether CaMKIIα on rats' SCDH and DRG participated in DNP and further explored the mechanisms underlying the analgesic effects of EA. The DNP model in rats was successfully established by intraperitoneal injection of streptozotocin. Certain DNP rats were treated with intrathecal injections of KN93, a CaMKII antagonist, and some of the DNP rats received EA intervention. The general conditions, behaviors, the expressions of CaMKIIα and phosphorylated CaMKIIα (p-CaMKIIα) were evaluated. DNP rats' paw withdrawal threshold was reduced and the expressions of p-CaMKIIα in SCDH and DRG were upregulated compared with the Normal group, while the level of CaMKIIα showed no significance. KN93 attenuated DNP rats' hyperalgesia and reduced the expressions of p-CaMKIIα. We also found EA attenuated the hyperalgesia of DNP rats and reduced the expressions of p-CaMKIIα. The above findings suggest that p-CaMKIIα in SCDH and DRG is involved in DNP. The analgesic effect of EA in DNP might be related to the downregulation of p-CaMKIIα expression level. Our study further supports that EA can be an effective clinical treatment for DNP.


Assuntos
Benzenossulfonamidas , Benzilaminas , Diabetes Mellitus , Neuropatias Diabéticas , Eletroacupuntura , Neuralgia , Ratos , Animais , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Estreptozocina , Neuropatias Diabéticas/terapia , Neuropatias Diabéticas/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Analgésicos
3.
Purinergic Signal ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870716

RESUMO

Diabetic neuropathic pain (DNP) is a common and destructive complication of diabetes mellitus. The discovery of effective therapeutic methods for DNP is vitally imperative because of the lack of effective treatments. Although 2 Hz electroacupuncture (EA) was a successful approach for relieving DNP, the mechanism underlying the effect of EA on DNP is still poorly understood. Here, we established a rat model of DNP that was induced by streptozotocin (STZ) injection. P2X4R was upregulated in the spinal cord after STZ-injection. The upregulation of P2X4R was mainly expressed on activated microglia. Intrathecal injection of a P2X4R antagonist or microglia inhibitor attenuated STZ-induced nociceptive thermal hyperalgesia and reduced the overexpression of brain-derived neurotrophic factor (BDNF), interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in the spinal cord. We also assessed the effects of EA treatment on the pain hypersensitivities of DNP rats, and further investigated the possible mechanism underlying the analgesic effect of EA. EA relieved the hyperalgesia of DNP. In terms of mechanism, EA reduced the upregulation of P2X4R on activated microglia and decreased BDNF, IL-1ß and TNF-α in the spinal cord. Mechanistic research of EA's analgesic impact would be beneficial in ensuring its prospective therapeutic effect on DNP as well as in extending EA's applicability.

4.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645737

RESUMO

Immune checkpoint blockade (ICB) has revolutionized cancer therapy but has had limited utility in several solid tumors such as breast cancer, a major cause of cancer-related mortality in women. Therefore, there is considerable interest in alternate strategies to promote an anti-cancer immune response. We demonstrate that NR0B2, a protein involved in cholesterol homeostasis, functions within myeloid immune cells to modulate the NLRP3 inflammasome and reduce the expansion of immune-suppressive regulatory T cells (Treg). Loss of NR0B2 increased mammary tumor growth and metastasis. Small molecule agonists, including one developed here, reduced Treg expansion, reduced metastatic growth and improved the efficacy of ICB. This work identifies NR0B2 as a target to re-educate myeloid immune cells providing proof-of-principle that this cholesterol-homeostasis axis may have utility in enhancing ICB.

5.
Nat Commun ; 14(1): 4101, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491347

RESUMO

Hypercholesterolemia and vascular inflammation are key interconnected contributors to the pathogenesis of atherosclerosis. How hypercholesterolemia initiates vascular inflammation is poorly understood. Here we show in male mice that hypercholesterolemia-driven endothelial activation, monocyte recruitment and atherosclerotic lesion formation are promoted by a crosstalk between macrophages and endothelial cells mediated by the cholesterol metabolite 27-hydroxycholesterol (27HC). The pro-atherogenic actions of macrophage-derived 27HC require endothelial estrogen receptor alpha (ERα) and disassociation of the cytoplasmic scaffolding protein septin 11 from ERα, leading to extranuclear ERα- and septin 11-dependent activation of NF-κB. Furthermore, pharmacologic inhibition of cyp27a1, which generates 27HC, affords atheroprotection by reducing endothelial activation and monocyte recruitment. These findings demonstrate cell-to-cell communication by 27HC, and identify a major causal linkage between the hypercholesterolemia and vascular inflammation that partner to promote atherosclerosis. Interventions interrupting this linkage may provide the means to blunt vascular inflammation without impairing host defense to combat the risk of atherosclerotic cardiovascular disease that remains despite lipid-lowering therapies.


Assuntos
Aterosclerose , Hipercolesterolemia , Masculino , Camundongos , Animais , Receptor alfa de Estrogênio/metabolismo , Hipercolesterolemia/complicações , Hipercolesterolemia/metabolismo , Células Endoteliais/metabolismo , Septinas/metabolismo , Colesterol/metabolismo , Aterosclerose/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Inflamação/patologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-36777630

RESUMO

Diabetic neuropathic pain (DNP) is a common complication of diabetes. Streptozotocin (STZ)-induced changes of protein in dorsal root ganglion (DRG) and spinal cord dorsal horn (SCDH) are critical for DNP genesis. However, which proteins change remains elusive. Here, the DNP model was established by a single intraperitoneal injection of STZ, accompanied by increased fasting blood glucose (FBG), decreased body weight (BW), and decreased paw withdrawal latency (PWL). Proteins change in L4-L6 DRGs and SCDH of rats were detected. Western blot and immunofluorescence results showed that expression levels of phosphorylated protein kinase C (p-PKC), transient receptor potential vanilloid-1 (TRPV1), Substance P (SP) and calcitonin gene-related peptide (CGRP) in the DRG and the SCDH of rats were increased after STZ injection. A preliminary study from our previous study showed that 2 Hz electroacupuncture (EA) effectively alleviates DNP. However, the analgesic mechanism of EA needs further elucidation. Here, EA at the bilateral Zusanli (ST36) and KunLun (BL60) acupoints was applied for one week, and to investigate the effect on DNP. EA reversed thermal hyperalgesia in DNP rats and downregulated the expression of p-PKC, TRPV1, SP, and CGRP in DRG and SCDH.

7.
Purinergic Signal ; 19(1): 29-41, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35218450

RESUMO

Diabetic neuropathic pain (DNP) is highly common in diabetes patients. P2X receptors play critical roles in pain sensitization. We previously showed that elevated P2X3 expression in dorsal root ganglion (DRG) contributes to DNP. However, the role of other P2X receptors in DNP is unclear. Here, we established the DNP model using a single high-dose streptozotocin (STZ) injection and investigated the expression of P2X genes in the DRG. Our data revealed elevated P2X2, P2X4, and P2X7 mRNA levels in DRG of DNP rats. The protein levels of P2X4 and P2X7 in DNP rats increased, but the P2X2 did not change significantly. To study the role of P2X4 and P2X7 in diabetes-induced hyperalgesia, we treated the DNP rats with TNP-ATP (2',3'-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate), a nonspecific P2X1-7 antagonist, and found that TNP-ATP alleviated thermal hyperalgesia in DNP rats. 2 Hz electroacupuncture is analgesic against DNP and could downregulate P2X4 and P2X7 expression in DRG. Our findings indicate that P2X4 and P2X7 in L4-L6 DRGs contribute to diabetes-induced hyperalgesia, and that EA reduces thermal hyperalgesia and the expression of P2X4 and P2X7.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Eletroacupuntura , Ratos , Animais , Hiperalgesia/metabolismo , Regulação para Baixo , Gânglios Espinais/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Neuropatias Diabéticas/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Diabetes Mellitus/metabolismo
8.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166515, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932893

RESUMO

Development of targeted therapies will be a critical step towards reducing the mortality associated with triple-negative breast cancer (TNBC). To achieve this, we searched for targets that met three criteria: (1) pharmacologically targetable, (2) expressed in TNBC, and (3) expression is prognostic in TNBC patients. Since nuclear receptors have a well-defined ligand-binding domain and are thus highly amenable to small-molecule intervention, we focused on this class of protein. Our analysis identified TLX (NR2E1) as a candidate. Specifically, elevated tumoral TLX expression was associated with prolonged recurrence-free survival and overall survival for breast cancer patients with either estrogen receptor alpha (ERα)-negative or basal-like tumors. Using two TNBC cell lines, we found that stable overexpression of TLX impairs in vitro proliferation. RNA-Seq analysis revealed that TLX reduced the expression of genes implicated in epithelial-mesenchymal transition (EMT), a cellular program known to drive metastatic progression. Indeed, TLX overexpression significantly decreased cell migration and invasion, and robustly decreased the metastatic capacity of TNBC cells in murine models. We identify SERPINB2 as a likely mediator of these effects. Taken together, our work indicates that TLX impedes the progression of TNBC. Several ligands have been shown to regulate the transcriptional activity of TLX, providing a framework for the future development of this receptor for therapeutic intervention.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Transição Epitelial-Mesenquimal/genética , Receptor alfa de Estrogênio/genética , Humanos , Ligantes , Camundongos , Receptores Nucleares Órfãos/uso terapêutico , Receptores Citoplasmáticos e Nucleares/genética , Neoplasias de Mama Triplo Negativas/metabolismo
9.
Endocrinology ; 163(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569056

RESUMO

Dysregulation of cholesterol homeostasis is associated with many diseases such as cardiovascular disease and cancer. Liver X receptors (LXRs) are major upstream regulators of cholesterol homeostasis and are activated by endogenous cholesterol metabolites such as 27-hydroxycholesterol (27HC). LXRs and various LXR ligands such as 27HC have been described to influence several extra-hepatic biological systems. However, disparate reports of LXR function have emerged, especially with respect to immunology and cancer biology. This would suggest that, similar to steroid nuclear receptors, the LXRs can be selectively modulated by different ligands. Here, we use RNA-sequencing of macrophages and single-cell RNA-sequencing of immune cells from metastasis-bearing murine lungs to provide evidence that LXR satisfies the 2 principles of selective nuclear receptor modulation: (1) different LXR ligands result in overlapping but distinct gene expression profiles within the same cell type, and (2) the same LXR ligands differentially regulate gene expression in a highly context-specific manner, depending on the cell or tissue type. The concept that the LXRs can be selectively modulated provides the foundation for developing precision pharmacology LXR ligands that are tailored to promote those activities that are desirable (proimmune), but at the same time minimizing harmful side effects (such as elevated triglyceride levels).


Assuntos
Receptores X do Fígado , Neoplasias Mamárias Experimentais , Células Mieloides , Receptores de Esteroides , Animais , Colesterol/metabolismo , Feminino , Ligantes , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Células Mieloides/metabolismo , Células Mieloides/patologia , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , RNA/genética , RNA/metabolismo , Receptores de Esteroides/metabolismo
10.
Biochem Pharmacol ; 196: 114621, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34043965

RESUMO

Cholesterol has been implicated in the pathophysiology and progression of several cancers now, although the mechanisms by which it influences cancer biology are just emerging. Two likely contributing mechanisms are the ability for cholesterol to directly regulate signaling molecules within the membrane, and certain metabolites acting as signaling molecules. One such metabolite is the oxysterol 27-hydroxycholesterol (27HC), which is a primary metabolite of cholesterol synthesized by the enzyme Cytochrome P450 27A1 (CYP27A1). Physiologically, 27HC is involved in the regulation of cholesterol homeostasis and contributes to cholesterol efflux through liver X receptor (LXR) and inhibition of de novo cholesterol synthesis through the insulin-induced proteins (INSIGs). 27HC is also a selective modulator of the estrogen receptors. An increasing number of studies have identified its importance in cancer progression of various origins, especially in breast cancer. In this review, we discuss the physiological roles of 27HC targeting these two nuclear receptors and the subsequent contribution to cancer progression. We describe how 27HC promotes tumor growth directly through cancer-intrinsic factors, and indirectly through its immunomodulatory roles which lead to decreased immune surveillance and increased tumor invasion. This review underscores the importance of the cholesterol metabolic pathway in cancer progression and the potential therapeutic utility of targeting this metabolic pathway.


Assuntos
Biomarcadores Tumorais/metabolismo , Hidroxicolesteróis/metabolismo , Neoplasias/metabolismo , Animais , Anticolesterolemiantes/uso terapêutico , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/metabolismo , Humanos , Neoplasias/induzido quimicamente , Neoplasias/tratamento farmacológico
11.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33959755

RESUMO

Cholesterol has been implicated in the clinical progression of breast cancer, a disease that continues to be the most commonly diagnosed cancer in women. Previous work has identified the cholesterol metabolite 27-hydroxycholesterol (27HC) as a major mediator of the effects of cholesterol on breast tumor growth and progression. 27HC can act as an estrogen receptor (ER) modulator to promote the growth of ERα+ tumors, and as a liver X receptor (LXR) ligand in myeloid immune cells to establish an immune-suppressive program. In fact, the metastatic properties of 27HC require the presence of myeloid cells with neutrophils (polymorphonuclear neutrophils; PMNs) being essential for the increase in lung metastasis in murine models. In an effort to further elucidate the mechanisms by which 27HC alters breast cancer progression, we made the striking finding that 27HC promoted the secretion of extracellular vesicles (EVs), a diverse assortment of membrane bound particles that includes exosomes. The resulting EVs had a size distribution that was skewed slightly larger than EVs generated by treating cells with vehicle. The increase in EV secretion and size was consistent across 3 different subtypes: primary murine PMNs, RAW264.7 monocytic cells, and 4T1 murine mammary cancer cells. Label-free analysis of 27HC-EVs indicated that they had a different metabolite composition to those from vehicle-treated cells. Importantly, 27HC-EVs from primary PMNs promoted tumor growth and metastasis in 2 different syngeneic models, demonstrating the potential role of 27HC-induced EVs in the progression of breast cancer. EVs from PMNs were taken up by cancer cells, macrophages, and PMNs, but not T cells. Since EVs did not alter proliferation of cancer cells, it is likely that their protumor effects are mediated through interactions with myeloid cells. Interestingly, RNA-seq analysis of tumors from 27HC-EV-treated mice do not display significantly altered transcriptomes, suggesting that the effects of 27HC-EVs occur early on in tumor establishment and growth. Future work will be required to elucidate the mechanisms by which 27HC increases EV secretion, and how these EVs promote breast cancer progression. Collectively, however, our data indicate that EV secretion and content can be regulated by a cholesterol metabolite, which may have detrimental effects in terms of disease progression, important findings given the prevalence of both breast cancer and hypercholesterolemia.


Assuntos
Hidroxicolesteróis/farmacologia , Neoplasias Mamárias Experimentais/patologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Moduladores de Receptor Estrogênico/farmacologia , Vesículas Extracelulares/patologia , Vesículas Extracelulares/fisiologia , Feminino , Hipercolesterolemia/complicações , Camundongos , Metástase Neoplásica/patologia , Transplante de Neoplasias , Neutrófilos/fisiologia , Neutrófilos/ultraestrutura , Células RAW 264.7
12.
Oncogene ; 40(16): 2872-2883, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33742124

RESUMO

Triple negative breast cancer (TNBC) is challenging to treat successfully because targeted therapies do not exist. Instead, systemic therapy is typically restricted to cytotoxic chemotherapy, which fails more often in patients with elevated circulating cholesterol. Liver x receptors are ligand-dependent transcription factors that are homeostatic regulators of cholesterol, and are linked to regulation of broad-affinity xenobiotic transporter activity in non-tumor tissues. We show that LXR ligands confer chemotherapy resistance in TNBC cell lines and xenografts, and that LXRalpha is necessary and sufficient to mediate this resistance. Furthermore, in TNBC patients who had cancer recurrences, LXRalpha and ligands were independent markers of poor prognosis and correlated with P-glycoprotein expression. However, in patients who survived their disease, LXRalpha signaling and P-glycoprotein were decoupled. These data reveal a novel chemotherapy resistance mechanism in this poor prognosis subtype of breast cancer. We conclude that systemic chemotherapy failure in some TNBC patients is caused by co-opting the LXRalpha:P-glycoprotein axis, a pathway highly targetable by therapies that are already used for prevention and treatment of other diseases.


Assuntos
Hidroxicolesteróis/metabolismo , Receptores X do Fígado/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Benzoatos/farmacologia , Benzilaminas/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Epirubicina/farmacologia , Feminino , Expressão Gênica , Humanos , Receptores X do Fígado/agonistas , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
13.
Cancer Lett ; 493: 266-283, 2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-32861706

RESUMO

Breast cancer remains one of the leading causes of cancer mortality in the US. Elevated cholesterol is a major risk factor for breast cancer onset and recurrence, while cholesterol-lowering drugs, such as statins, are associated with a good prognosis. Previous work in murine models showed that cholesterol increases breast cancer metastasis, and the pro-metastatic effects of cholesterol were due to its primary metabolite, 27-hydroxycholesterol (27HC). In our prior work, myeloid cells were found to be required for the pro-metastatic effects of 27HC, but their precise contribution remains unclear. Here we report that 27HC impairs T cell expansion and cytotoxic function through its actions on myeloid cells, including macrophages, in a Liver X receptor (LXR) dependent manner. Many oxysterols and LXR ligands had similar effects on T cell expansion. Moreover, their ability to induce the LXR target gene ABCA1 was associated with their effectiveness in impairing T cell expansion. Induction of T cell apoptosis was likely one mediator of this impairment. Interestingly, the enzyme responsible for the synthesis of 27HC, CYP27A1, is highly expressed in myeloid cells, suggesting that 27HC may have important autocrine or paracrine functions in these cells, a hypothesis supported by our finding that breast cancer metastasis was reduced in mice with a myeloid specific knockout of CYP27A1. Importantly, pharmacologic inhibition of CYP27A1 reduced metastatic growth and improved the efficacy of checkpoint inhibitor, anti-PD-L1. Taken together, our work suggests that targeting the CYP27A1 axis in myeloid cells may present therapeutic benefits and improve the response rate to immune therapies in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Colestanotriol 26-Mono-Oxigenase/genética , Hidroxicolesteróis/efeitos adversos , Células Mieloides/metabolismo , Linfócitos T/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Colestanotriol 26-Mono-Oxigenase/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Receptores X do Fígado/metabolismo , Camundongos , Células Mieloides/efeitos dos fármacos , Transplante de Neoplasias , Linfócitos T/efeitos dos fármacos
14.
Artigo em Inglês | MEDLINE | ID: mdl-31885667

RESUMO

Electroacupuncture (EA) at ST36 can improve the survival rate in rats after hemorrhagic shock (HS). The current study investigated rats with 60% blood loss. 144 rats were divided into four groups: hemorrhage without fluid resuscitation (HS), EA after hemorrhage without fluid resuscitation (EA), hemorrhage with delayed resuscitation (DFR), and EA after hemorrhage with delayed resuscitation (EA + DFR). The survival rate and biological parameters 0, 3, 12, and 24 h after HS were investigated. The 24 h survival rate of EA + DFR was significantly higher than that of DFR. 12 h after hemorrhage, the level of mean arterial blood pressure of EA + DFR was significantly higher than that of DFR, and the levels of renal blood flow, intestinal mucosal blood flow, and hepatic blood flow of EA + DFR were also significantly higher than those of DFR. Three hours after hemorrhage, the levels of lactate, PaCO2, alanine aminotransferase, and creatinine of groups receiving EA were significantly lower than those of non-EA groups, and the levels of pH, PaO2, and diamine oxidase of groups receiving EA were significantly higher. EA at ST36 can improve the 24 h survival rate and produce the experimental antishock effects on tissue perfusion and organ protection from fatal HS.

15.
Endocr Relat Cancer ; 26(7): 659-675, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31048561

RESUMO

There is an urgent need for more effective strategies to treat ovarian cancer. Elevated cholesterol levels are associated with a decreased progression-free survival time (PFS) while statins are protective. 27-Hydroxycholesterol (27HC), a primary metabolite of cholesterol, has been shown to modulate the activities of the estrogen receptors (ERs) and liver x receptors (LXRs) providing a potential mechanistic link between cholesterol and ovarian cancer progression. We found that high expression of CYP27A1, the enzyme responsible for the synthesis of 27HC, was associated with decreased PFS, while high expression of CYP7B1, responsible for 27HC catabolism, was associated with increased PFS. However, 27HC decreased the cellular proliferation of various ovarian cancer cell lines in an LXR-dependent manner. Intriguingly, ID8 grafts were unable to effectively establish in CYP27A1-/- mice, indicating involvement of the host environment. Tumors from mice treated with 27HC had altered myeloid cell composition, and cells from the marrow stem cell lineage were found to be responsible for the effects in CYP27A1-/- mice. While inhibition of CYP27A1 or immune checkpoint did not significantly alter tumor size, their combination did, thereby highlighting this axis as a therapeutic target.


Assuntos
Colestanotriol 26-Mono-Oxigenase/genética , Neoplasias Ovarianas/genética , Animais , Antígeno B7-H1/antagonistas & inibidores , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Colestanotriol 26-Mono-Oxigenase/antagonistas & inibidores , Colestanotriol 26-Mono-Oxigenase/deficiência , Colesterol na Dieta/efeitos adversos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Hidroxicolesteróis/metabolismo , Camundongos , Células Supressoras Mieloides/citologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , Intervalo Livre de Progressão , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Endocrinology ; 160(7): 1573-1589, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050726

RESUMO

The involvement of small heterodimer partner (SHP) in the inhibition of hepatic bile acid synthesis from cholesterol has been established. However, extrahepatic expression of SHP implies that SHP may have regulatory functions other than those in the liver. Here, we find that SHP mRNA expression is high in murine bone marrow cells, suggesting a physiological role within macrophages. Indeed, expression of SHP in macrophages decreases the transcriptional activity and nuclear localization of nuclear factor κB, whereas downregulation of SHP has the opposite effects. Expression of genes associated with macrophage-T cell crosstalk were altered by overexpression or downregulation of SHP. Intriguingly, increasing SHP expression in macrophages resulted in decreased T cell expansion, a hallmark of T cell activation, whereas knockdown of SHP resulted in increased expansion. Analyses of the expanded T cells revealed a dichotomous skewing between effector T cells and regulatory T cells (Tregs), with SHP overexpression reducing Tregs and downregulation of SHP increasing their expansion. The expanded Tregs were confirmed to be suppressive via adoptive transfers. IL-2 and TGF-ß, known inducers of Treg differentiation, were found to be regulated by SHP. Furthermore, SHP occupancy at the promoter region of IL-2 was increased after macrophages were challenged with lipopolysaccharide. Neutralizing antibodies to IL-2 and TGF-ß inhibited the expansion of Tregs mediated by downregulation of SHP. This study demonstrates that expression and activity of SHP within macrophages can alter T cell fate and identifies SHP as a potential therapeutic target for autoimmune diseases or solid cancers.


Assuntos
Células da Medula Óssea/metabolismo , Macrófagos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Linfócitos T/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Regulação para Baixo , Regulação da Expressão Gênica , Camundongos , NF-kappa B/metabolismo
17.
Mol Cell Endocrinol ; 484: 42-51, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30660701

RESUMO

Oxysterols are derivatives of cholesterol and an important regulator of cholesterol metabolism, in part due to their role as ligands for nuclear receptors, such as the liver X receptors. Oxysterols are also known to be ligands for the RAR-related orphan receptors, involved in normal T cell differentiation. However, increasing evidence supports a role for oxysterols in the progression of several diseases. Here, we review recent developments in oxysterol research, highlighting the biological functions that oxysterols exert through their target nuclear receptors: the liver X receptors, estrogen receptors, RAR-related orphan receptors and the glucocorticoid receptor. We also bring the regulation of the immune system into the context of interaction between oxysterols and nuclear receptors, discussing the effect of such interaction on the pro-inflammatory function of macrophages and the development of T cells. Finally, we examine the impact that oxysterols have on various disease models, including cancer, Alzheimer's disease and atherosclerosis, stressing the role of nuclear receptors if previously identified. This review underscores the need to consider the multifaceted roles of oxysterols in terms of multiple receptor engagements and selective modulation of these receptors.


Assuntos
Oxisteróis/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Progressão da Doença , Humanos , Receptores X do Fígado/metabolismo , Macrófagos/imunologia , Receptores Nucleares Órfãos/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/metabolismo , Linfócitos T/imunologia
18.
Sci Rep ; 7(1): 312, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28331194

RESUMO

Frequent and drastic ambient temperature variation may cause respiratory diseases such as common cold and pneumonia, the mechanism for which is not fully understood, however, due to lack of appropriate animal models. Ma-Huang-Tang (MHT) is widely used in China for treatment of respiratory diseases. The present study aimed to investigate the effect of MHT on temperature alternation induced rat lung injury and explore underlying mechanisms. Male Sprague-Dawley rats were exposed to a cold environment for 1 h and then shifted to a warm environment for 30 min. This cold and warm alteration cycled 4 times. Rats were administrated with MHT (1.87 g/kg) by gavage 6 h after cold-warm-cycles. Cold-warm-cycles induced pulmonary microcirculatory disorders, lung edema and injury, decrease in the expression of tight junction proteins, increase in VE-cadherin activation, increase in the expression and activation of Caveolin-1, Src and NF-κB, and NADPH oxidase subunits p47phox, p40phox and p67phox membrane translocation and inflammatory cytokines production. All alterations were significantly ameliorated by post-treatment with MHT. This study showed that rats subjected to cold-warm-cycles may be used as an animal model to investigate ambient temperature variation-induced lung injury, and suggested MHT as a potential strategy to combat lung injury induced by temperature variation.


Assuntos
Temperatura Baixa , Medicamentos de Ervas Chinesas/administração & dosagem , Exposição Ambiental , Temperatura Alta , Lesão Pulmonar/prevenção & controle , Animais , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/efeitos da radiação , Lesão Pulmonar/patologia , Ratos Sprague-Dawley , Resultado do Tratamento
19.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 33(3): 193-196, 2017 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-29931931

RESUMO

OBJECTIVE: To explore the effect of dimethyl sulfoxide(DMSO) on suppressing the release of gut inflammatory cytokine and re-store of the barrier impairment following zymosan-insulted systemic inflammatory response syndrome (SIRS). METHODS: S D rats were randomly divided into four groups:sham with administration of normal saline (SS group); sham with administration of DMSO (DS group); zymosan with administration of normal saline (ZS group); and zymosan with administration of DMSO (ZD group), each group includes two subgroups at 4 h and 24 h after surgery. At 4 h and 24 h after intraperitoneal injection of zymosan (750 mg/kg), the levels of intestinal inflammatory cytokines (tumor necrosis factor-αand interleukin-10) and the activity of diamine oxidase in plasma were examined. Intestinal injury was evaluated by using an intestinal histological score. RESULTS: DMSO suppressed the release of tumor necrosis factor-αand increased interleukin-10 levels in the intestine compared with the ZS group at the corresponding time points. DMSO decreased the level of diamine oxidase in plasma compared with the ZS group. DMSO restored the injury of intestinal villi and the gut injury score was significantly lower than that in the ZS group. CONCLUSIONS: DMSO can suppress the release of intestinal inflammatory cytokines and restore zymosan-insulted gut barrier impairment.


Assuntos
Dimetil Sulfóxido/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Zimosan/efeitos adversos , Amina Oxidase (contendo Cobre)/sangue , Animais , Citocinas/metabolismo , Inflamação , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley
20.
Microcirculation ; 21(7): 649-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24809727

RESUMO

OBJECTIVE: The aim of present study was to investigate the efficacy of MXSGT, a traditional Chinese medicine formula used for treatment of respiratory system diseases, in the LPS-induced rat ALI particularly with a focus on its effect on lung microvascular hyperpermeability and inflammatory reaction. METHODS: Male Sprague-Dawley rats were injected with LPS (7.5 mg/kg, 1.5 mg/mL) intraperitoneally. MXSGT (0.52 g or 2.61 g/kg) was given by gavage six hours after LPS injection. RESULTS: LPS stimulation resulted in a reduced survival rate, deteriorated vital signs, an increase in the number of leukocytes adhering to lung venules, the albumin leakage, the activity of MPO in lung tissues, the production of pro-inflammatory cytokines and lung perivascular edema. After LPS stimulation, western blot analysis revealed an increase in the expression of ICAM-1 and toll-like receptor 4, a decrease in tight junction proteins and an activation of cav-1, Src, and NF-κB. All the LPS-induced alterations were significantly attenuated by posttreatment with MXSGT. CONCLUSIONS: This study demonstrated MXSGT as a potential strategy for lung microvascular hyperpermeability and inflammatory reaction in ALI, and suggested that the beneficial role of MXSGT was correlated with toll-like receptor 4, Src, and NF-κB.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Permeabilidade Capilar/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Pulmão/irrigação sanguínea , Microvasos/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/fisiopatologia , Animais , Líquido da Lavagem Broncoalveolar/química , Cavéolas/efeitos dos fármacos , Adesão Celular , Citocinas/metabolismo , Esquema de Medicação , Medicamentos de Ervas Chinesas/administração & dosagem , Inflamação , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/genética , Leucócitos , Lipopolissacarídeos/toxicidade , Masculino , Microvasos/fisiopatologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteínas de Junções Íntimas/biossíntese , Proteínas de Junções Íntimas/genética , Receptor 4 Toll-Like/biossíntese , Receptor 4 Toll-Like/genética , Vênulas/efeitos dos fármacos , Vênulas/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA