Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 23(1): 188, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071507

RESUMO

BACKGROUND: Garlic is an entirely sterile crop with important value as a vegetable, condiment, and medicine. However, the evolutionary history of garlic remains largely unknown. RESULTS: Here we report a comprehensive map of garlic genomic variation, consisting of amazingly 129.4 million variations. Evolutionary analysis indicates that the garlic population diverged at least 100,000 years ago, and the two groups cultivated in China were domesticated from two independent routes. Consequently, 15.0 and 17.5% of genes underwent an expression change in two cultivated groups, causing a reshaping of their transcriptomic architecture. Furthermore, we find independent domestication leads to few overlaps of deleterious substitutions in these two groups due to separate accumulation and selection-based removal. By analysis of selective sweeps, genome-wide trait associations and associated transcriptomic analysis, we uncover differential selections for the bulb traits in these two garlic groups during their domestication. CONCLUSIONS: This study provides valuable resources for garlic genomics-based breeding, and comprehensive insights into the evolutionary history of this clonal-propagated crop.


Assuntos
Alho , Alho/genética , Genoma de Planta , Genômica , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
2.
Front Nutr ; 8: 764133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790689

RESUMO

Garlic (Allium sativum) is an important vegetable crop that is widely used in cooking and medicine. The greening phenomenon of garlic severely decreases the quality of garlic and hinders garlic processing. To study the mechanism of garlic greening, comprehensive full-length transcript sets were constructed. We detected the differences in greening between Pizhou (PZ) garlic and Laiwu (LW) garlic that were both stored at -2.5°C and protected from light at the same time. The results showed that 60,087 unigenes were respectively annotated to the NR, KEGG, GO, Pfam, eggNOG and Swiss Prot databases, and a total of 30,082 unigenes were annotated. The analysis of differential genes and differential proteins showed that PZ garlic and LW garlic had 923 differentially expressed genes (DEGs), of which 529 genes were up regulated and 394 genes were downregulated. Through KEGG and GO enrichment analysis, it was found that the most significant way of enriching DEGs was the phenylpropane metabolic pathway. Proteomics analysis found that there were 188 differentially expressed proteins (DAPs), 162 up-regulated proteins, and 26 down-regulated proteins between PZ garlic and LW garlic. The content of 10 proteins related to phenylpropanoid biosynthesis in PZ garlic was significantly higher than that of LW garlic. This study explored the mechanisms of garlic greening at a molecular level and further discovered that the formation of garlic green pigment was affected significantly by the phenylpropanoid metabolic pathway. This work provided a theoretical basis for the maintenance of garlic quality during garlic processing and the future development of the garlic processing industries.

3.
PLoS One ; 16(5): e0250571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33989289

RESUMO

Soil microbial communities are affected by interactions between agricultural management (e.g., fertilizer) and soil compartment, but few studies have considered combinations of these factors. We compared the microbial abundance, diversity and community structure in two fertilizer dose (high vs. low NPK) and soil compartment (rhizosphere vs. bulk soils) under 6-year fertilization regimes in a continuous garlic cropping system in China. The soil contents of NO3- and available K were significantly higher in bulk soil in the high-NPK. The 16S rRNA gene-based bacterial and archaeal abundances were positively affected by both the fertilizer dose and soil compartment, and were higher in the high-NPK fertilization and rhizosphere samples. High-NPK fertilization increased the Shannon index and decreased bacterial and archaeal richness, whereas the evenness was marginally positively affected by both the fertilizer dose and soil compartment. Soil compartment exerted a greater effect on the bacterial and archaeal community structure than did the fertilization dose, as demonstrated by both the nonmetric multidimensional scaling and redundancy analysis results. We found that rhizosphere effects significantly distinguished 12 dominant classes of bacterial and archaeal communities, whereas the fertilizer dose significantly identified four dominant classes. In particular, a Linear Effect Size analysis showed that some taxa, including Alphaproteobacteria, Rhizobiales, Xanthomonadaceae and Flavobacterium, were enriched in the garlic rhizosphere of the high-NPK fertilizer samples. Overall, the fertilizer dose interacted with soil compartment to shape the bacterial and archaeal community composition, abundance, and biodiversity in the garlic rhizosphere. These results provide an important basis for further understanding adaptive garlic-microbe feedback, reframing roots as a significant moderating influence in agricultural management and shaping the microbial community.


Assuntos
Archaea/genética , Bactérias/genética , Fertilizantes/análise , Alho/crescimento & desenvolvimento , Rizosfera , Microbiologia do Solo/normas , Solo/química , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , China , Alho/genética , Alho/microbiologia , RNA Ribossômico 16S/genética
4.
Plant Physiol Biochem ; 158: 34-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33296844

RESUMO

Garlic (Allium sativum L.) is an economically important vegetable crop which is used worldwide for culinary and medicinal purposes. Soil salinity constrains the yield components of garlic. Understanding the responsive mechanism of garlic to salinity is crucial to improve its tolerance. To address this problem, two garlic cultivars differing in salt tolerance were used to investigate the long-term adaptive responses to salt stress at phenotype and transcriptome levels. Phenotypic analysis showed four-week salt stress significantly decreased the yield components of salt-sensitive cultivar. Transcriptomes of garlics were de novo assembled and mined for transcriptional activities regulated by salt stress. The results showed that photosynthesis, energy allocation, and secondary metabolism were commonly enriched in both sensitive and tolerant genotypes. Moreover, distinct responsive patterns were also observed between the two genotypes. Compared with the salt-tolerant genotype, most transcripts encoding enzymes in the phenylpropanoid biosynthesis pathway were coordinately down regulated in the salt-sensitive genotype, resulting in alternation of the content and composition of lignin. Meanwhile, transcripts encoding the enzymes in the brassinosteroid (BR) biosynthesis pathway were also systematically down regulated in the salt-sensitive genotypes. Taken together, these results suggested that BR-mediated lignin accumulation possibly plays an important role in garlic adaption to salt stress. These findings expand the understanding of responsive mechanism of garlic to salt stress.


Assuntos
Brassinosteroides/química , Alho/fisiologia , Lignina/química , Estresse Salino , Estresse Fisiológico , Transcriptoma , Alho/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo
5.
Int J Food Microbiol ; 141(1-2): 122-5, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20488570

RESUMO

The control activity of Rhodotorulaglutinis, salicylic acid (SA), alone or in combination, on gray mold spoilage and natural spoilage of strawberries was investigated. R. glutinis as stand-alone treatment, and the combined treatment of SA at 100 microg/mL with R. glutinis significantly reduced the disease incidence and lesion diameter of gray mold spoilage, respectively at both 20 degrees C and 4 degrees C. After 20 d storage at 4 degrees C, the combination of SA and R. glutinis was more effective than R. glutinis or SA alone treatment. At the concentration of 100 microg/mL, SA had no inhibition on the mycelial growth of Botrytiscinerea in PDA, however, it significantly inhibited spore germination of B. cinerea in PDB. The combination of R. glutinis and SA was the most effective treatment in controlling the natural spoilage of strawberries, and resulted in low average natural spoilage incidence in 6.3% or 6.3%, respectively, compared with 37% or 46.7% in the water-treated control fruit following storage at 20 degrees C for 3d or 4 degrees C for 7d followed by 20 degrees C for 2d.


Assuntos
Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Conservação de Alimentos/métodos , Fragaria/microbiologia , Controle Biológico de Vetores/métodos , Rhodotorula , Ácido Salicílico/farmacologia , Botrytis/crescimento & desenvolvimento , Micélio , Esporos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA