Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Anim Sci Biotechnol ; 15(1): 138, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39385285

RESUMO

BACKGROUND: Aflatoxin B1 (AFB1) is a prevalent contaminant in agricultural products, presenting significant risks to animal health. CotA laccase from Bacillus licheniformis has shown significant efficacy in degrading mycotoxins in vitro test. The efficacy of Bacillus CotA laccase in animals, however, remains to be confirmed. A 2 × 2 factorial design was used to investigate the effects of Bacillus CotA laccase level (0 or 1 U/kg), AFB1 challenge (challenged or unchallenged) and their interactions on ducks. The purpose of this study was to evaluate the efficacy of Bacillus CotA laccase in alleviating AFB1 toxicosis of ducks. RESULTS: Bacillus CotA laccase alleviated AFB1-induced declines in growth performance of ducks accompanied by improved average daily gain (ADG) and lower feed/gain ratio (F/G). Bacillus CotA laccase ameliorated AFB1-induced gut barrier dysfunctions and inflammation testified by increasing the jejunal villi height/crypt depth ratio (VH/CD) and the mRNA expression of tight junction protein 1 (TJP1) and zonula occluden-1 (ZO-1) as well as decreasing the expression of inflammation-related genes in the jejunum of ducks. Amino acid metabolome showed that Bacillus CotA laccase ameliorated AFB1-induced amino acid metabolism disorders evidenced by increasing the level of glutamic acid in serum and upregulating the expression of amino acid transport related genes in jejunum of ducks. Bacillus CotA laccase ameliorated AFB1-induced liver injury testified by suppressing oxidative stress, inhibiting apoptosis, and downregulating the expression of hepatic metabolic enzyme related genes of ducks. Moreover, Bacillus CotA laccase degraded AFB1 in digestive tract of ducks, resulting in the reduced absorption level of AFB1 across intestinal epithelium testified by the decreased level of AFB1-DNA adduct in the liver, and the reduced content of AFB1 residues in liver and feces of ducks. CONCLUSIONS: Bacillus CotA laccase effectively improved the growth performance, intestinal health, amino acid metabolism and hepatic aflatoxin metabolism of ducks fed AFB1 diets, highlighting its potential as an efficient and safe feed enzyme for AFB1 degradation in animal production.

2.
Virus Genes ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312037

RESUMO

Porcine epidemic diarrhea virus (PEDV) small envelope protein (E) plays important roles in virus budding, assembly, and release. Our previous study found that PEDV E protein localizes in the endoplasmic reticulum (ER) to trigger the unfolded protein response (UPR). However, how UPR is directly regulated by PEDV E protein remains elusive. Thus, in this study, we investigated the expression of ER chaperone glucose-regulated protein 78 (GRP78) and activations of the three main UPR signaling pathways to elucidate the underlying mechanisms of UPR triggered by PEDV E protein. The results showed that over-expression of PEDV E protein increased expression of GRP78 and induced stronger phosphorylation of both protein kinase RNA-like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF2α), as well as caused the significant degradation of activating transcription factor 6 (ATF6), in both dose- and time-dependent manners. However, PEDV E protein did not induce UPR through the inositol-requiring enzyme 1 (IRE1) signaling pathway, as revealed by the splicing of XBP1 remaining unaffected and unchanged when PEDV E protein was overexpressed. Taken together, these results demonstrate that PEDV E protein induces UPR through activation of both PERK and ATF6 pathways rather than IRE1 signaling. This study not only provides mechanistic details of UPR induced by the PEDV E protein, but also provides insights into these new biologic functions to help us better understand the interactions between PEDV and host cells.

3.
Foods ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611368

RESUMO

Deoxynivalenol (DON), primarily generated by Fusarium species, often exists in agricultural products. It can be transformed to 3-epi-deoxynivalenol (3-epi-DON), with a relatively low toxicity, via two steps. DDH in Pelagibacterium halotolerans ANSP101 was proved to convert DON to 3-keto-deoxynivalenol (3-keto-DON). In the present research, AKR4, a NADPH-dependent aldo/keto reductase from P. halotolerans ANSP101, was identified to be capable of converting 3-keto-DON into 3-epi-DON. Our results demonstrated that AKR4 is clearly a NADPH-dependent enzyme, for its utilization of NADPH is higher than that of NADH. AKR4 functions at a range of pH 5-10 and temperatures of 20-60 °C. AKR4 is able to degrade 89% of 3-keto-DON in 90 min at pH 7 and 50 °C with NADPH as the cofactor. The discovery of AKR4, serving as an enzyme involved in the final step in DON degradation, might provide an option for the final detoxification of DON in food and feed.

4.
Antioxidants (Basel) ; 12(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136147

RESUMO

Aflatoxin B1 (AFB1), a kind of mycotoxin, imposes acute or chronic toxicity on humans and causes great public health concerns. Chlorogenic acid (CGA), a natural phenolic substance, shows a powerful antioxidant and anti-inflammatory effect. This study was conducted to investigate the effect and mechanism of CGA on alleviating cytotoxicity induced by AFB1 in L-02 cells. The results showed that CGA (160 µM) significantly recovered cell viability and cell membrane integrity in AFB1-treated (8 µM) cells. Furthermore, it was found that CGA reduced AFB1-induced oxidative injury by neutralizing reactive oxygen species (ROS) and activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In addition, CGA showed anti-inflammatory effects as it suppressed the expression of inflammation-related genes (IL-6, IL-8, and TNF-α) and AFB1-induced noncanonical nuclear factor kappa-B (NF-κB) activation. Moreover, CGA mitigated AFB1-induced apoptosis by maintaining the mitochondrial membrane potential (MMP) and inhibiting mRNA expressions of Caspase-3, Caspase-8, Bax, and Bax/Bcl-2. These findings revealed a possible mechanism: CGA prevents AFB1-induced cytotoxicity by maintaining mitochondrial membrane potential, activating Nrf2/HO-1, and inhibiting the noncanonical NF-κB signaling pathway, which may provide a new direction for the application of CGA.

5.
Polymers (Basel) ; 15(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36850327

RESUMO

This study investigated the impact of surface basicity on the performance of layered double hydroxides (LDHs) as heat stabilizers for polyvinyl chloride (PVC). LDHs with varying surface basicity were synthesized and characterized using XRD, SEM, BET, and CO2-TPD. The LDHs were then combined with zinc stearate and dibenzoylmethane to create an environmentally friendly heat stabilizer and added to PVC. The resulting PVC composites were evaluated for thermal stability using the oven-aging method. The results showed that a lower Mg/Al molar ratio (2.0) improved the initial whiteness and long-term thermal stability of PVC composites compared to higher ratios (2.5, 3.0, and 3.5). Replacing Mg with Zn in the LDHs had a similar effect to that of reducing the Mg/Al ratio. Crosslinking the laminae of LDHs with 5% silane coupling agent KH-560 reduced the surface basicity of LDHs by 79%, increasing the chromaticity index, b*, and thermal stability time of PVC composites by 48% and 14%, respectively. A descriptive relationship was established between the structure and surface basicity of LDHs and the initial whiteness and long-term thermal stability of PVC composites.

6.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(2): 113-119, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-34672147

RESUMO

Objective: To observe the effect of healthy volunteers different work rate increasing rate cardiopulmonary exercise test (CPET) on the peak exercise core indicators and the changes of respiratory exchange rate (RER) during exercise, to explore the effect of different work rate increasing rate on CPET peak exercise related indicators. Methods: Twelve healthy volunteers were randomly assigned to a moderate (30 W/min), a relatively low (10 W/min) and relatively high (60 W/min) three different work rate increasing rate CPET on different working days in a week. The main peak exercise core indicators of CPET data: VO2, VCO2, work rate (WR), breathe frequency(Bf), tidal volume (VT), ventilation (VE), heart rate (HR), blood pressure (BP), Oxygen pulse(O2P), exercise time and RER for each period of CPET were analyzed using standard methods. The ANOVA test and paired two-two comparison was performed on the difference of each index in the three groups of different work rate increasing rate. Results: Compared with the moderate work rate group, the peak work rate of the lower and higher work rate groups were relatively lower and higher, respectively ((162.04±41.59) W/min vs (132.92±34.55) W/min vs (197.42±46.14) W/min, P<0.01); exercise time was significantly prolonged and shortened ((5.69 ± 1.33) min vs (13.49 ± 3.43) min vs (3.56 ± 0.76) min, P<0.01); peak RER (1.27 ± 0.07 vs 1.18 ± 0.06 vs 1.33 ± 0.08, P<0.01~P<0.05) and the recovery RER maximum (1.72±0.16 vs 1.61±0.11 vs 1.81±0.14, P<0.01~P<0.05) were significantly decreased and increased. Conclusion: Different work rate increasing rate of CPET significantly change the Peak Work Rate, exercise time, Peak RER, and maximum RER during recovery. The CPET operator should choose an individualized work rate increasing rate that is appropriate for the subject, and also does not use a fixed RER value as a basis for ensuring safety, the subject's extreme exercise, and early termination of exercise.


Assuntos
Teste de Esforço , Insuficiência Cardíaca , Exercício Físico , Frequência Cardíaca , Humanos , Consumo de Oxigênio
7.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(2): 120-124, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-34672148

RESUMO

Objective: To observe the effect of healthy volunteers different work rate increasing rate cardiopulmonary exercise testing (CPET) on the sub-peak parameters . Methods: Twelve healthy volunteers were randomly assigned to a moderate (30 W/min), a relatively low (10 W/min) and relatively high (60 W/min) three different work rate increasing rate CPET on different working days in a week. The core indicators related to CPET sub-peak exercise of 12 volunteers were compared according to standard Methods: anaerobic threshold (AT), oxygen uptake per unit power (ΔVO2/ΔWR), oxygen uptake eficiency plateau,(OUEP), the lowest average of 90 s of carbon dioxide ventilation equivalent (Lowest VE/ VCO2), the slope of carbon dioxide ventilation equivalent (VE/ VCO2 Slope) and intercept and anaerobic threshold oxygen uptake ventilation efficiency value (VO2/ VE@AT) and the anaerobic threshold carbon dioxide ventilation equivalent value (VE/ VCO2@AT). Paired t test was performed on the difference of each parameter in the three groups of different work rate increasing rate. Results: Compared with the relatively low and relatively high work rate increasing rate group, the moderate work rate increasing rate group uptake eficiency plateau, (42.22±4.76 vs 39.54±3.30 vs 39.29±4.29) and the lowest average of 90 s of carbon dioxide ventilation equivalent (24.13±2.88 vs 25.60±2.08 vs 26.06±3.05) was significantly better, and the difference was statistically significant (P<0.05); Compared with the moderate work rate increasing rate group, the oxygen uptake per unit work rate of the relatively low and relatively high work rate increasing rate group increased and decreased significantly ((8.45±0.66 vs 10.04±0.58 vs 7.16±0.60) ml/(min·kg)), difference of which was statistically significant (P<0.05); the anaerobic threshold did not change significantly ((0.87±0.19 vs 0.87±0.19 vs 0.89±0.19) L/min), the difference was not statistically significant (P>0.05). Conclusion: Relatively low and relatively high power increase rate can significantly change the CPET sub-peak sports related indicators such as the effectiveness of oxygen uptake ventilation, the effectiveness of carbon dioxide exhaust ventilation, and the oxygen uptake per unit work rate. Compared with the moderate work rate increasing rate CPET, the lower and higher work rate increasing rate significantly reduces the effectiveness of oxygen uptake ventilation and the effectiveness of carbon dioxide exhaust ventilation in healthy individuals. The standardized operation of CPET requires the selection of a work rate increasing rate suitable for the subject, so that the CPET sub-peak related indicators can best reflect the true functional state of the subject.


Assuntos
Teste de Esforço , Consumo de Oxigênio , Limiar Anaeróbio , Humanos , Troca Gasosa Pulmonar , Ventilação Pulmonar
8.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(2): 147-153, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-34672152

RESUMO

Objective: To verify that the cardiopulmonary exercise testing (CPET) performed by clinical subjects is the maximum extreme exercise, we designed The Max test(Max)during clinical CPET. We used Max to verify the accuracy of the quantitative CPET evaluation result, and whether it is feasible and safe to use the specific value of a certain index as the standard for stopping CPET. Methods: Two hundred and sixteen cases from Fuwai Hospital were selected during June 2017 to January 2019,including 41 healthy person(control group) and 175with cardiovascular diseases(patient group),The patients had a CPET peak RER ≤ 1.10, or the peak heart rate and peak blood pressure were basically non-responsive.The Max was first attempted in 60 subjects,and this study is further expanded . When the CPET ended, they had a 5-minute break, then the Max, during which, they cycled with a velocity of ≥ 60 r/min, at a constant intensity equivalent to to 130% of peak work,until exhausted.The difference and percentage difference between the peak heart rate and the peak oxygen uptake were calculated. ①If the percentage difference of heart rate and oxygen uptake are all less than -10%,then the Max is defined as failure,otherwise it is succesful. 2 If the percentage difference is between -10%~10%, then the Max is successful, which proved that the CPET is precise.③If the difference is ≥10%, the Max is successful, which proves that the CPET is non-extreme exercise. Results: Patient group's Peak VO2(L/min,ml/(min·kg)),anaerobic threshold (L/min,ml/(min·kg),%pred),Peak VO2/HR(ml/beat, % pred),Peak RER,Peak SBP,Peak WR,peak heart rate,OUEP (ratio,%pred) were lower than those of the control group(P<0.05).The VE/ VCO2 Slope (ratio,%pred)and Lowest VE/ VCO2(ratio,%pred) were higher in the patient group than in the control group (P<0.05).No adverse events occurred during the CPET and Max in all cases. Among the 216 cases,Max was successful in 198 cases(91.7%).CPET was proved to be maximum extreme exercise for 182 cases,non-maximum extreme exercise for 16 cases,and failed in 18 cases(8.3%).Conclusion: For CPET with a low peak RER and a maximum challenge,the Max can confirm the accuracy of the objective quantitative assessment of CPET. Max is safe and feasible,and that deserved further research and clinical application.


Assuntos
Teste de Esforço , Insuficiência Cardíaca , Limiar Anaeróbio , Exercício Físico , Humanos , Consumo de Oxigênio
9.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(2): 162-168, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-34672154

RESUMO

Objective: The cardiopulmonary function of patients with chronic heart failure (CHF) was severely limited, but the holistic integrative exercise pathophysiology is still unclear. Methods: After signed the consent form, Eighty three patients with severe CHF from October 2016 to October 2017 in Fuwai Hospital were performed Ramp incremental loading program CardioPulmonary Exercise Testing (CPET), and 12 normal subjects served as control. CPET were performed according to standard of Harbor-UCLA MC and the circulatory, respiratory and metabolic parameters during CPET were measured and analyzed. Results: Peak oxygen uptake (Peak VO2) in CHF (14.33±2.69) ml/(min·kg), (44.25±14.74)%pred was significantly lower than control ((29.42±5.46) ml/(min·kg), (83.88±6.28)%pred). Other core parameters of CPET such as anaerobic threshold (AT), peak oxygen pulse, oxygen uptake efficiency platform (OUEP), the lowest of carbon dioxide output ventilation ratio (Lowest VE/VCO2), and carbon dioxide output ventilation slope (VE/VCO2 Slope) in CHF were significantly different with the control group(P<0.01). The core parameters of lung function, such as forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), FEV1/FVC, and carbon monoxide diffusion (DLCO) were significantly decreased (P<0.01). Systolic blood pressure during all stages of CPET in CHF was significantly lower than control group (P<0.05); Heart rate at AT, peak and recovery stages were significantly lower than control (P<0.01). Minute ventilation, tidal volume and respiratory frequency at rest, warm-up were significantly higher than control (P<0.05). Tidal volume at recovery was significantly higher than control (P<0.05). VO2 at AT, peak and recovery stages in CHF were significantly higher than control (P<0.01). Oxygen pulse at AT and peak were significantly higher than control (P<0.01). Pulse oxygen saturation during all stages of CPET in CHF were significantly lower than control (P<0.01). Conclusion: The decreased holistic functional capacity of cardiogenic CHF dominantly due to circulatory limitation, and secondly due to respiratory and metabolic limitation.


Assuntos
Exercício Físico , Insuficiência Cardíaca , Limiar Anaeróbio , Teste de Esforço , Humanos , Consumo de Oxigênio
10.
Artigo em Chinês | MEDLINE | ID: mdl-34672457

RESUMO

Objective: In order to explore the mechanism of neonatal spontaneous breathing, the difference of oxygen and carbon dioxide between umbilical cord arteries and veins before the start of spontaneous breathing after birth has been analyzed among people. In this part, the related information is analyzed individually. Methods: After all fetal parents signed the informed consent before birth, and before the newborn was born and did not breathe, the umbilical cord was exposed as quickly as possible, and the heparinized arterial indwelling needle was inserted into the umbilical artery and umbilical vein in the direction of newborn and placenta, and then blood was taken continuously. Although dozens of mothers were selected,but only 3 cases were collected from Pua and Puv blood samplers at the same time for blood gas analysis and determination, and the differences and dynamic changes of umbilical vein and umbilical artery were calculated and analyzed. Results: In all 3 none spontaneous breathing newborns,PuvO2 was significantly higher than PuaO2 at the same time (P<0.01), with an average difference of (24.17±7.09) mmHg; while PuvCO2 was significantly lower than PuaCO2 (all P<0.01), with an average difference of (-7.67±3.70) mmHg.The difference of Puv-uaO2 was significantly higher than those of Puv-uaCO2 (P<0.05). Conclusion: PuaO2 decreases gradually with time (heartbeat frequency) before spontaneous breathing after the delivered fetus as a newborn, and it induces the first inhalation to start spontaneous breathing when it reaches the threshold of triggering breathing.


Assuntos
Dióxido de Carbono , Artérias Umbilicais , China , Feminino , Humanos , Recém-Nascido , Oxigênio , Pressão Parcial , Gravidez
11.
Artigo em Chinês | MEDLINE | ID: mdl-34672461

RESUMO

Objective: The objective is to find the characteristics of arterial blood sample waveform in different respiration models. Methods: Six post-operative patients with normal heart function and negative Allen test, were 4 male and 2 female, (59.00±16.64)year, (71.67±0.37)kg, left ventricular ejection fraction(LVEF) (61.33±2.16)%, had been placed the arterial catheterization and central venous catheterization for continuous collecting arterial in 3 different kinds of respiration models: normal breathing, no breathing and deep breathing. We selected two breaths cycles of waveform from each patient for data calculations of magnitudes and time interval. Compare the adjacent highest and lowest values of patients to verify whether there are periodic wave-like signal changes in arterial and venous blood gas in the three breathing states. In addition, statistical t-test analysis was performed on the change amplitude of the periodic wave-like signal of the patient's arterial and venous blood gas to compare whether there is a difference. Results: The heart beat numbers for drawing blood into pipe were 15-16, and all covered more than 2 breathing cycles. There were significant changes of arterial PaO2 (i.e. the highest high values compare to the next lowest values, P<0.05) in three different breathing models(normal, no breathing and high breathing), the magnitudes of which were (9.96±5.18)mmHg, (5.33±1.55)mmHg and (13.13±7.55)mmHg, with (8.09±2.43)%, (5.29±2.19)% and (10.40±2.68)% from their mean respectively. PO2 in venous blood gas did not show wavy changes under normal breathing, 20 s breath holding and high tidal volume ventilation. The amplitudes were (1.63 ± 0.41) mmHg, (1.13 ± 0.41) mmHg and (1.31 ± 0.67) mmHg, which were (3.91 ± 1.22)%, (2.92 ± 1.12)%, (3.33 ± 1.81)%, respectively, which were significantly lower than that of arterial blood gas under the same state, but there was no significant difference between groups. Conclusion: With continuous beat-by-beat arterial blood sampling and ABG analyzing method in three different breathing models, We obtain a clear evidence of the biggest periodic parameters ABG waveform in high breathing models, which followed by normal breathing models, no breathing was the smallest, and the wave variation amplitude of venous oxygen partial pressure was not obvious in the three respiratory states, which implies the oscillatory information of the arterial blood with comes from the gas exchanging in the lung.


Assuntos
Respiração , Função Ventricular Esquerda , Gasometria , Feminino , Humanos , Masculino , Volume Sistólico , Volume de Ventilação Pulmonar
12.
Artigo em Chinês | MEDLINE | ID: mdl-34672456

RESUMO

Objective: The fetus has no actual respiration, and the newborn begins to breathe after birth. We assume that the first breath dominantly generated by hypoxia. In this study, the changes and lowest limit of blood oxygen partial pressureof umbilical artery (PuaO2) after chemoreceptor were analyzed to explore the mechanism of neonatal spontaneous breathing. Methods: With signed consent form by all fetal parents before birth, 14 newborns successfully completed the umbilical artery or vein catheterization and drawn blood according to the heartbeat. All blood samples analyzed by blood gas analyzer,calculated and analyzed the similarities and differences between umbilical vein(Puv) and umbilical artery(Pua). Results: Although we completed 14 newborns, there were only 9 cases of umbilical artery samples and 8 cases of umbilical vein samples were collected. Only 3 cases collected both Pua and Puv blood samples at the same time (see serial paper II). PuaO2 in gradually decreased with time (heartbeat frequency), until Pua contracted after spontaneous breathing produced about 8~10 heartbeats, and then could not get enough blood samples. Only 3 newborns were able to take blood samples after spontaneous breathing for 8~10 heartbeats, and their PuaO2 were jumped to 186.0, 137.0 and 93.8 mmHg respectively. The mean value of PuaO2 was (25.94±6.79, 18.04~37.51)mmHg, the highest value was (29.11±6.46, 23.00~45.90)mmHg, and the lowest value was (21.34±5.54, 14.00~33.60)mmHg. Although PuvO2 decreased gradually with time (heartbeat) too, most of them also showed the tendency of alternately rising and falling with the regularity of mother's respiration. The mean value of PuvO2 was (53.35±21.35, 32.56~100.73)mmHg, the highest value was (90.38±48.44, 43.40~153.00)mmHg, and the lowest value was (36.96±14.90, 24.80~73.80)mmHg. Although there were large individual differences, the mean, highest and lowest values of PuvO2 were significantly higher than those of PuaO2 (P<0.05); although PuvCO2 slightly lower than PuaCO2, it was no significant difference (P>0.05). Conclusion: PuaO2 decreases gradually with time before spontaneous breathing after the delivered fetus as a newborn, and it induces the first inhalation to start spontaneous breathing when it reaches the threshold of triggering breathing.


Assuntos
Dióxido de Carbono , Artérias Umbilicais , China , Humanos , Recém-Nascido , Oxigênio , Pressão Parcial
13.
Artigo em Chinês | MEDLINE | ID: mdl-34672460

RESUMO

Objective: The arterial blood with the oscillatory information comes from the right heart system after gas exchanging in the lung. However, the evidence of the waveform of venous ABG is lack. The objectives of this article are to compare the different information between arterial and venous beat-by-beat blood sample at the same time. Methods: Six post-operative patients with normal heart function and negative Allen test, had been placed the arterial catheterization and central venous catheterization directly connected to pre-heparin plasticpipes for continuous collecting arterial and venous blood. We twisted the 2 pipes into helix formation. After drawing arterial and venous blood with syringes in one heart beat with one helix at the same time, totally 15 heart beats, clipping the pipes with forceps, we put the helix pipe into icedwater at once and analyses PaO2, PaCO2, pH and SaO2 as soon as possible. We selected two breathscycles of waveform from each patient for data calculations of magnitudes and time interval. Results: The heart beat numbers for drawing blood into pipe were 15~16, and all covered more than 2 breathing cycles. There were significant changes of arterial PaO2(i.e. the highest high values compare to the next lowestvalues, P<0.05), but no significant changes in venous blood(P>0.05). The magnitudes of changing PaO2 in arterial and venous blood sample were (9.96±5.18)mmHg and (1.63±0.41)mmHg with significant variance(P=0.010), and they were (8.09±2.43)% and (3.91±1.22)%from their mean with significant variance(P=0.009) respectively. Conclusion: With continuous beat-by-beat arterial and venous blood sampling and ABG analyzing method at the same time, we obtain a clear evidence of periodic parameters ABG waveform, which following breathing cycle, but no clear ABG waveform of the periodic parameters in the venous blood samples, which implies the oscillatory information of the arterial blood with comes from the gas exchanging in the lung.


Assuntos
Artérias , Corpo Humano , Gasometria , Humanos , Respiração , Veias
14.
Artigo em Chinês | MEDLINE | ID: mdl-34672462

RESUMO

Objective: On the basis of preliminarily verifying the use of ultra-fast reaction polymer matrix optical fiber oxygen sensor and its measuring system to record the continuous and dynamic changes of carotid artery oxygen partial pressure (PaO2), in order to analyze and discuss the influence of lung ventilation on the continuous and dynamic changes of PaO2, we designed a whole animal experimental study in vivo. Methods: Four hybrid goats were selected, and the skin was cut and exposed directly under general anesthesia and tracheal intubation. The oxygen sensor, connected with the measuring system, was inserted directly into the left carotid artery to continuously record the dynamic changes of PaO2. With normal minute ventilation,mechanical ventilation is implemented through three tidal volumes: normal tidal volume (VT=15 ml/kg, Rf=20 bpm), half tidal volume (halved VT, doubled Rf) and double tidal volume (doubled VT, halved Rf). Each tidal volume was stable for 10~15 min respectively. We analyzed and calculated the average values of PaO2, the fluctuation magnitudes of PaO2 changes between breaths of last 180 s and the delay times of lung-carotid artery were. We analyzed the effects of different tidal volumes. Results: The heart rate and blood pressure of living goats were maintained stable during the mechanical ventilation experiment with normal ventilation volume Lung-carotid artery delay time is 1.4~1.8 s (about 3 heartbeats at this time). Under normal tidal volume of mechanical ventilation, the average value of PaO2 was (102.94±2.40, 99.38~106.16) mmHg, and the fluctuation range was (21.43±1.65, 19.21~23.59) mmHg, accounting for (20.80± 1.34, 18.65~22.22)% of the average value. Under the condition of halving tidal volume, the average value of PaO2 was maintained at (101.01±4.25, 94.09~105.66) mmHg, which was slightly decreased but not significant (P>0.05 compared with normal mechanical ventilation), but the fluctuation range of PaO2 was significantly reduced to (18.14±1.43, 16.46~20.05) mmHg, accounting for 17.5% of the average value. Under double tidal volume mechanical ventilation, although the average value of PaO2 increased slightly remained at (106.42±4.74, 101.19~114.08) mmHg (P>0.05 compared with normal mechanical ventilation and P<0.05 compared with half tidal volume mechanical ventilation), the fluctuation magnitude of PaO2 increased significantly to (26.58±1.88, 23.46~28.46)mmHg. Conclusion: Inspiration and expiration of normal lung ventilation are the initial factors for the increase and decrease of PaO2 in carotid artery. Under normal ventilation, halving tidal volume and doubling tidal volume significantly changed the fluctuation magnitude of PaO2, but the average value of PaO2 changed only slightly, while the lung-carotid delay time was similar.


Assuntos
Cabras , Oxigênio , Animais , Artérias Carótidas , Respiração Artificial , Volume de Ventilação Pulmonar
15.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 37(1): 104-112, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-34672470

RESUMO

Objective: We tried to implant the ultra-fast polymer optical fiber chemical oxygen sensor (POFCOS) into arterial blood vessel,connect with photoelectric conversion measurement system to record the continuous dynamic rapid changes of arterial PO2(PaO2) in whole living animals. It should be the experimental evidence for the new theory of holistic integrative physiology and medicine(HIPM) forexplain the mechanism of respiratory control and regulation in whole circusof respiration-circulation-metabolism. Methods: ①Fabrication of ultrafast POFCOS, calibration and its measuring system: The distal part of 2 m optical fiber was heated and pulled until it became a tapered tip. After cleaning and drying, the tip of 1 mm tapered optical fiber was dip-coated into the luminophore doped polymer solution, then was slowly pumped out while solvent was quickly evaporated to form an oxygen sensing tip, which was dried at room temperature for 24 hours. ②Animal experiments: Under general anesthesia and intubation, goatwas mechanically ventilated with 40%~60% oxygen. We exposed both right and left carotid arteries and the left femoral artery by skin cutting, and inserted the POFCOS directly into the arteries via indwelling catheter. The end of POFCOS were connected to the personal computer through optical fiber, excitation and detection Y-type optical fiber coupler through photoelectric conversion, so as we can realize the continuous dynamic response of living goat carotid PaO2 under mechanical ventilation. We mainly analyzed the intra-breath wave-form alternate increase and decrease of PaO2 and their time delay between lung and carotid arteries.We completes breathing control whole loop to explain the mechanism of mutual breathing and the switching of inspiration and exhalation. Results: The POFCOS has a very fast T90 response time was set 100 ms for liquid. When the heart rate of 40%~60% oxygen mechanical ventilated living goat was ~110 bpm, the PaO2 of left and right carotid artery showed a same wave-sizeup and down following with the inspiration and expiration of ventilator, with a range of up to 15 mmHg. There weresignificant noises of PaO2 change recorded in the left femoral artery. The lung-carotid artery time delay is 1.5~1.7 s after inhalation and exhalation, PaO2 at both left and right carotid arteries starts toincrease and decrease. After two-three heartbeats after the start of lung ventilation, thealternate up-down wave-form information of the arterialized pulmonary vein blood after pulmonary capillaries waspumpedby left ventricle to the position of peripheral chemoreceptors,thus realizing the whole cycle of inhalation and exhalation. It alternately interrupted inhalation, i.e. switching inhalation to exhalation, and then interrupted exhalation,i.e. switching exhalation to inhalation. Conclusion: The ultra-fast reactive implantableoxygen sensor and its measuring system can measure the physiological waveform changes of PaO2 in living animals, which can provide experimental evidence for explaining the mechanism of switching of inspiration-expiration in HIPM.


Assuntos
Polímeros , Respiração Artificial , Animais , Fibras Ópticas , Oxigênio , Pressão Parcial
16.
Mil Med Res ; 8(1): 13, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593415

RESUMO

BACKGROUND: Until January 18, 2021, coronavirus disease-2019 (COVID-19) has infected more than 93 million individuals and has caused a certain degree of panic. Viral pneumonia caused by common viruses such as respiratory syncytial virus, rhinovirus, human metapneumovirus, human bocavirus, and parainfluenza viruses have been more common in children. However, the incidence of COVID-19 in children was significantly lower than that in adults. The purpose of this study was to describe the clinical manifestations, treatment and outcomes of COVID-19 in children compared with those of other sources of viral pneumonia diagnosed during the COVID-19 outbreak. METHODS: Children with COVID-19 and viral pneumonia admitted to 20 hospitals were enrolled in this retrospective multi-center cohort study. A total of 64 children with COVID-19 were defined as the COVID-19 cohort, of which 40 children who developed pneumonia were defined as the COVID-19 pneumonia cohort. Another 284 children with pneumonia caused by other viruses were defined as the viral pneumonia cohort. The epidemiologic, clinical, and laboratory findings were compared by Kolmogorov-Smirnov test, t-test, Mann-Whitney U test and Contingency table method. Drug usage, immunotherapy, blood transfusion, and need for oxygen support were collected as the treatment indexes. Mortality, intensive care needs and symptomatic duration were collected as the outcome indicators. RESULTS: Compared with the viral pneumonia cohort, children in the COVID-19 cohort were mostly exposed to family members confirmed to have COVID-19 (53/64 vs. 23/284), were of older median age (6.3 vs. 3.2 years), and had a higher proportion of ground-glass opacity (GGO) on computed tomography (18/40 vs. 0/38, P < 0.001). Children in the COVID-19 pneumonia cohort had a lower proportion of severe cases (1/40 vs. 38/284, P = 0.048), and lower cases with high fever (3/40 vs. 167/284, P < 0.001), requiring intensive care (1/40 vs. 32/284, P < 0.047) and with shorter symptomatic duration (median 5 vs. 8 d, P < 0.001). The proportion of cases with evaluated inflammatory indicators, biochemical indicators related to organ or tissue damage, D-dimer and secondary bacterial infection were lower in the COVID-19 pneumonia cohort than those in the viral pneumonia cohort (P < 0.05). No statistical differences were found in the duration of positive PCR results from pharyngeal swabs in 25 children with COVID-19 who received antiviral drugs (lopinavir-ritonavir, ribavirin, and arbidol) as compared with duration in 39 children without antiviral therapy [median 10 vs. 9 d, P = 0.885]. CONCLUSION: The symptoms and severity of COVID-19 pneumonia in children were no more severe than those in children with other viral pneumonia. Lopinavir-ritonavir, ribavirin and arbidol do not shorten the duration of positive PCR results from pharyngeal swabs in children with COVID-19. During the COVID-19 outbreak, attention also must be given to children with infection by other pathogens infection.


Assuntos
COVID-19/epidemiologia , Síndrome Respiratória Aguda Grave/epidemiologia , Adolescente , COVID-19/fisiopatologia , COVID-19/terapia , Criança , Pré-Escolar , China/epidemiologia , Feminino , Humanos , Lactente , Masculino , Pandemias , Estudos Retrospectivos , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/fisiopatologia , Síndrome Respiratória Aguda Grave/terapia , Índice de Gravidade de Doença
17.
J Biomed Nanotechnol ; 11(12): 2231-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510316

RESUMO

A family of nanogel drug carriers has been designed to enhance the oral absorption of paclitaxel (PTX). The PAHy-based nanogels were prepared by the interpenetration of poly-α,ß-polyasparthydrazide (PAHy) chains and dicarboxyl-poly (ethylene glycol) (CPEG), forming a smart chain network. The PAHy-based nanogels were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), dynamic light scattering (DLS), X-ray diffraction (XRD) and high performance liquid chromatography (HPLC). The adhesion and retention properties of fluorescein isothiocyanate (FITC)-nanogels in vivo were investigated using an in vivo imaging system and confocal laser scanning microscopy (CLSM). The smart nanogels had a particle size of -200 nm, increased the degree and rate of release, and spent over 12 h in the gastrointestinal tract. They also produced excellent adhesion, permeability and retention (APR) effects and increased oral absorption, confirming their use as potential sustained-release carriers for the oral delivery of the hydrophobic anticancer agent PTX.


Assuntos
Portadores de Fármacos/química , Hidrazinas/química , Nanoestruturas/química , Nylons/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Administração Oral , Animais , Liberação Controlada de Fármacos , Géis , Interações Hidrofóbicas e Hidrofílicas , Absorção Intestinal , Masculino , Paclitaxel/metabolismo , Paclitaxel/farmacocinética , Permeabilidade , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley
18.
J Pharm Pharmacol ; 63(12): 1548-58, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22060285

RESUMO

OBJECTIVES: The aim of this study was to investigate the correlation between the growth behaviour and in-vitro dissolution rate of water-insoluble drugs prepared with high-shear wet granulation. METHODS: Granules containing nimodipine, microcrystalline cellulose, low-substituted hydroxypropylcellulose and aqueous solution of hydroxypropylcellulose were prepared and the effects of independent process variables, including impeller speed and liquid-to-solid ratio were taken into consideration. The mean granule size, granule-size distribution (GSD), porosity and surface properties were monitored at different kneading times to identify the granule-growth mechanisms simultaneously. A computer-based method was applied to simulate the dissolution behaviour of polydisperse granules based on the GSD data. KEY FINDINGS: The in-vitro dissolution rate of drug was high for the early stages of granulation and sharply decreased when coalescence and consolidation of granules started, approaching a flat and low level when granules were sufficiently consolidated. The simulated dissolution results were in agreement with experimental observations and were significantly affected by the GSD, porosity and surface properties of granules during the granulation process. Moreover the GSD was directly related to the granule-growth behaviour and mechanisms. CONCLUSIONS: In general, it was concluded that the dissolution properties of nimodipine basically correlated with the growth behaviour of granules in a high-shear mixer. The simulation method based on GSD can be used as a convenient and rapid way to predict the dissolution properties for formulation development and granulation optimization.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Adsorção , Algoritmos , Bloqueadores dos Canais de Cálcio/química , Química Farmacêutica/instrumentação , Simulação por Computador , Cristalização , Composição de Medicamentos/instrumentação , Cinética , Microscopia Eletrônica de Varredura , Nimodipina/química , Nitrogênio/química , Tamanho da Partícula , Porosidade , Pós , Solubilidade , Propriedades de Superfície
19.
AAPS PharmSciTech ; 12(2): 610-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21553164

RESUMO

The objective of the present study was to investigate the mechanism, kinetics, and factors affecting the polymorphic transformation of nimodipine (NMD) and indomethacin (IMC) during high shear granulation. Granules containing active pharmaceutical ingredient, microcrystalline cellulose, and low-substituted hydroxypropylcellulose were prepared with ethanolic hydroxypropylcellulose solution, and the effects of independent process variables including impeller speed and granulating temperature were taken into consideration. Two polymorphs of the model drugs and granules were characterized by X-ray powder diffraction analysis and quantitatively determined by differential scanning calorimetry. A theoretical kinetic method of ten kinetic models was applied to analyze the polymorphic transformation of model drugs. The results obtained revealed that both the transformation of modification I to modification II of NMD and the transformation of the α form to the γ form of IMC followed a two-dimensional nuclei growth mechanism. The activation energy of transformation was calculated to be 7.933 and 56.09 kJ·mol(-1) from Arrhenius plot, respectively. Both the granulating temperature and the impeller speed affected the transformation rate of the drugs and, in particular, the high shear stress significantly accelerated the transformation process. By analyzing the growth mechanisms of granules in high-shear mixer, it was concluded that the polymorphic transformation of NMD and IMC took place in accordance with granule growth in a high-shear mixer.


Assuntos
Química Farmacêutica/métodos , Indometacina/farmacocinética , Nimodipina/farmacocinética , Polímeros/farmacocinética , Resistência ao Cisalhamento , Celulose/análogos & derivados , Celulose/química , Celulose/normas , Química Farmacêutica/instrumentação , Química Farmacêutica/normas , Indometacina/química , Indometacina/normas , Nimodipina/química , Nimodipina/normas , Polímeros/química , Polímeros/normas , Difração de Raios X/instrumentação , Difração de Raios X/métodos , Difração de Raios X/normas
20.
Int J Pharm ; 386(1-2): 249-55, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19900520

RESUMO

Anti-neuroexcitation peptide (ANEP) is a promising candidate for the treatment of neuroexcitation-associated diseases. N-Trimethyl chitosan (TMC) with different degrees of quaternization was synthesized, characterized and evaluated as a brain-targeting delivery vehicle for ANEP. ANEP-loaded TMC nanoparticles were prepared by ionic crosslinking of TMC with tripolyphosphate (TPP). The optimized formulation of nanoparticles consisted of TMC with a degree of quaternization (DQ) of 36.1% and TPP solution with a concentration of 0.6 mg/mL. The mean encapsulation efficiency and loading capacity of the optimum formulation was 80.63% and 185.4 microg/mL, respectively, while the mean particle size, zeta potential, and pH value were 255 nm, 32.0 mV and 6.61, respectively. ANEP was labeled with FITC for in vivo tissue distribution experiments. The results showed that the targetability of ANEP to brain was significantly increased by TMC nanoparticles. Absorptive-mediated transcytosis was believed to be the main pathway for the brain-targeting of FITC-ANEP-TMC/NPs. These findings demonstrate that TMC nanoparticles are potentially useful brain-targeting delivery systems for ANEP.


Assuntos
Encéfalo/metabolismo , Quitosana/química , Portadores de Fármacos , Nanopartículas , Venenos de Escorpião/metabolismo , Animais , Transporte Biológico , Química Farmacêutica , Reagentes de Ligações Cruzadas/química , Composição de Medicamentos , Fluoresceína-5-Isotiocianato/metabolismo , Corantes Fluorescentes/metabolismo , Masculino , Camundongos , Nanotecnologia , Permeabilidade , Polifosfatos/química , Estabilidade Proteica , Venenos de Escorpião/química , Venenos de Escorpião/farmacocinética , Espectrometria de Fluorescência , Tecnologia Farmacêutica/métodos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA